23 research outputs found

    De-novo FAIRification via an Electronic Data Capture system by automated transformation of filled electronic Case Report Forms into machine-readable data

    Get PDF
    Introduction: Existing methods to make data Findable, Accessible, Interoperable, and Reusable (FAIR) are usually carried out in a post hoc manner: after the research project is conducted and data are collected. De-novo FAIRification, on the other hand, incorporates the FAIRification steps in the process of a research project. In medical research, data is often collected and stored via electronic Case Report Forms (eCRFs) in Electronic Data Capture (EDC) systems. By implementing a de novo FAIRification process in such a system, the reusability and, thus, scalability of FAIRification across research projects can be greatly improved. In this study, we developed and implemented a novel method for de novo FAIRification via an EDC system. We evaluated our method by applying it to the Registry of Vascular Anomalies (VASCA). Methods: Our EDC and research project independent method ensures that eCRF data entered into an EDC system can be transformed into machine-readable, FAIR data using a semantic data model (a canonical representation of the data, based on ontology concepts and semantic web standards) and mappings from the model to questions on the eCRF. The FAIRified data are stored in a triple store and can, together with associated metadata, be accessed and queried through a FAIR Data Point. The method was implemented in Castor EDC, an EDC system, through a data transformation application. The FAIRness of the output of the method, the FAIRified data and metadata, was evaluated using the FAIR Evaluation Services. Results: We successfully applied our FAIRification method to the VASCA registry. Data entered on eCRFs is automatically transformed into machine-readable data and can be accessed and queried using SPARQL queries in the FAIR Data Point. Twenty-one FAIR Evaluator tests pass and one test regarding the metadata persistence policy fails, since this policy is not in place yet. Conclusion: In this study, we developed a novel method for de novo FAIRification via an EDC system. Its application in the VASCA registry and the automated FAIR evaluation show that the method can be used to make clinical research data FAIR when they are entered in an eCRF without any intervention from data managementMolecular Technology and Informatics for Personalised Medicine and Healt

    Applying the FAIR Data Principles to the Registry of Vascular Anomalies (VASCA)

    No full text
    BACKGROUND: Connecting currently existing, heterogeneous rare disease (RD) registries would greatly facilitate epidemiological and clinical research. To increase their interoperability, the European Union developed a set of Common Data Elements (CDEs) for RD registries. OBJECTIVES: To implement the CDEs and the FAIR data principles in the Registry of Vascular Anomalies (VASCA). METHODS: We created a semantic model for the CDE and transformed this into a Resource Description Framework (RDF) template. The electronic case report forms (eCRF) were mapped to the RDF template and published in a FAIR Data Point (FDP). RESULTS: The FAIR VASCA registry was successfully implemented using Castor EDC (Electronic Data Capture) software. CONCLUSION: FAIR technology allows researchers to query and combine data from different registries in real-time

    Eighth International Symposium “Monitoring of Mediterranean Coastal Areas. Problems and Measurement Techniques”

    Get PDF
    The 8th International Symposium "Monitoring of Mediterranean Coastal Areas. Problems and Measurements Techniques" was organized by CNR-IBE in collaboration with FCS Foundation, and Natural History Museum of the Mediterranean and under the patronage of University of Florence, Accademia dei Geogofili, Tuscany Region and Livorno Province. It is the occasion in which scholars can illustrate and exchange their activities and innovative proposals, with common aims to promote actions to preserve coastal marine environment. Considering Symposium interdisciplinary nature, the Scientific Committee, underlining this holistic view of Nature, decided to celebrate Alexander von Humboldt; a nature scholar that proposed the organic and inorganic nature’s aspects as a single system. It represents a sign of continuity considering that in-presence Symposium could not be carried out due to the COVID-19 pandemic restrictions. Subjects are related to coastal topics: morphology; flora and fauna; energy production; management and integrated protection; geography and landscape, cultural heritage and environmental assets, legal and economic aspects
    corecore