320 research outputs found

    Using Reinforcement Learning in the tuning of Central Pattern Generators

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaÉ objetivo deste trabalho aplicar técnicas de Reinforcement Learning em tarefas de aprendizagem e locomoção de robôs. Reinforcement Learning é uma técnica de aprendizagem útil no que diz respeito à locomoção de robôs, devido à ênfase que dá à interação direta entre o agente e o meio ambiente, e ao facto de não exigir supervisão ou modelos completos, ao contrário do que acontece nas abordagens clássicas. O objetivo desta técnica consiste na decisão das ações a tomar, de forma a maximizar uma recompensa cumulativa, tendo em conta o facto de que as decisões podem afetar não só as recompensas imediatas, como também as futuras. Neste trabalho será apresentada a estrutura e funcionamento do Reinforcement Learning e a sua aplicação em Central Pattern Generators, com o objetivo de gerar locomoção adaptativa otimizada. De forma a investigar e identificar os pontos fortes e capacidades do Reinforcement Learning, e para demonstrar de uma forma simples este tipo de algoritmos, foram implementados dois casos de estudo baseados no estado da arte. No que diz respeito ao objetivo principal desta tese, duas soluções diferentes foram abordadas: uma primeira baseada em métodos Natural-Actor Critic, e a segunda, em Cross-Entropy Method. Este último algoritmo provou ser capaz de lidar com a integração das duas abordagens propostas. As soluções de integração foram testadas e validadas com recurso ao simulador Webots e ao modelo do robô DARwIN-OP.In this work, it is intended to apply Reinforcement Learning techniques in tasks involving learning and robot locomotion. Reinforcement Learning is a very useful learning technique with regard to legged robot locomotion, due to its ability to provide direct interaction between the agent and the environment, and the fact of not requiring supervision or complete models, in contrast with other classic approaches. Its aim consists in making decisions about which actions to take so as to maximize a cumulative reward or reinforcement signal, taking into account the fact that the decisions may affect not only the immediate reward, but also the future ones. In this work it will be studied and presented the Reinforcement Learning framework and its application in the tuning of Central Pattern Generators, with the aim of generating optimized robot locomotion. In order to investigate the strengths and abilities of Reinforcement Learning, and to demonstrate in a simple way the learning process of such algorithms, two case studies were implemented based on the state-of-the-art. With regard to the main purpose of the thesis, two different solutions are addressed: a first one based on Natural-Actor Critic methods, and a second, based on the Cross-Entropy Method. This last algorithm was found to be very capable of handling with the integration of the two proposed approaches. The integration solutions were tested and validated resorting to Webots simulation and DARwIN-OP robot model

    Tensegrity and Recurrent Neural Networks: Towards an Ecological Model of Postural Coordination

    Get PDF
    Tensegrity systems have been proposed as both the medium of haptic perception and the functional architecture of motor coordination in animals. However, a full working model integrating those two aspects with some form of neural implementation is still lacking. A basic two-dimensional cross-tensegrity plant is designed and its mechanics simulated. The plant is coupled to a Recurrent Neural Network (RNN). The model’s task is to maintain postural balance against gravity despite the intrinsically unstable configuration of the plant. The RNN takes only proprioceptive input about the springs’ lengths and rate of length change and outputs minimum lengths for each spring which modulates their interaction with the plant’s inertial kinetics. Four artificial agents are evolved to coordinate the patterns of spring contractions in order to maintain dynamic equilibrium. A first study assesses quiet standing performance and reveals coordinative patterns between the tensegrity rods akin to humans’ strategy of anti-phase hip-ankle relative phase. The agents show a mixture of periodic and aperiodic trajectories of their Center of Mass. Moreover, the agents seem to tune to the anticipatory “time-to-balance” quantity in order to maintain their movements within a region of reversibility. A second study perturbs the systems with mechanical platform shifts and sensorimotor degradation. The agents’ response to the mechanical perturbation is robust. Dimensionality analysis of the RNNs’ unit activations reveals a pattern of degree of freedom recruitment after perturbation. In the degradation sub-study, different levels of noise are added to the RNN inputs and different levels of weakening gain are applied to the forces generated by the springs to mimic haptic degradation and muscular weakening in elderly humans. As expected, the systems perform less well, falling earlier than without the insults. However, the same systems re-evolved again under the degraded conditions see significant functional recovery. Overall, the dissertation supports the plausibility of RNN cum tensegrity models of haptics-guided postural coordination in humans

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system
    • …
    corecore