8,303 research outputs found

    Detection of Weak Gravitational Lensing by Large-scale Structure

    Get PDF
    We report a detection of the coherent distortion of faint galaxies arising from gravitational lensing by foreground structures. This ``cosmic shear'' is potentially the most direct measure of the mass power spectrum, as it is unaffected by poorly-justified assumptions made concerning the biasing of the distribution. Our detection is based on an initial imaging study of 14 separated 8' x 16' fields observed in good, homogeneous conditions with the prime focus EEV CCD camera of the 4.2m William Herschel Telescope. We detect an rms shear of 1.6% in 8' x 8' cells, with a significance of 3.4 sigma. We carefully justify this detection by quantifying various systematic effects and carrying out extensive simulations of the recovery of the shear signal from artificial images defined according to measured instrument characteristics. We also verify our detection by computing the cross-correlation between the shear in adjacent cells. Including (gaussian) cosmic variance, we measure the shear variance to be (0.016)^2 plus/minus (0.012)^2 plus/minus (0.006)^2, where these 1 sigma errors correspond to statistical and systematic uncertainties, respectively. Our measurements are consistent with the predictions of cluster-normalised CDM models (within 1 sigma) but a COBE-normalised SCDM model is ruled out at the 3.0 sigma level. For the currently-favoured Lambda-CDM model (with Omega_m = 0.3), our measurement provides a normalisation of the mass power spectrum of sigma_8 = 1.5 plus/minus 0.5, fully consistent with that derived from cluster abundances. Our result demonstrates that ground-based telescopes can, with adequate care, be used to constrain the mass power spectrum on various scales. The present results are limited mainly by cosmic variance, which can be overcome in the near future with more observations.Comment: 17 LaTex pages, including 13 figures and 3 tables. Accepted for publication in MNRAS, minor revisio

    Cosmic Ray Rejection by Linear Filtering of Single Images

    Full text link
    We present a convolution-based algorithm for finding cosmic rays in single well-sampled astronomical images. The spatial filter used is the point spread function (approximated by a Gaussian) minus a scaled delta function, and cosmic rays are identified by thresholding the filtered image. This filter searches for features with significant power at spatial frequencies too high for legitimate objects. Noise properties of the filtered image are readily calculated, which allows us to compute the probability of rejecting a pixel not contaminated by a cosmic ray (the false alarm probability). We demonstrate that the false alarm probability for a pixel containing object flux will never exceed the corresponding probability for a blank sky pixel, provided we choose the convolution kernel appropriately. This allows confident rejection of cosmic rays superposed on real objects. Identification of multiple-pixel cosmic ray hits can be enhanced by running the algorithm iteratively, replacing flagged pixels with the background level at each iteration.Comment: Accepted for publication in PASP (May 2000 issue). An iraf script implementing the algorithm is available from the author, or from http://sol.stsci.edu/~rhoads/ . 16 pages including 3 figures. Uses AASTeX aaspp4 styl

    A Cepheid Distance to NGC 4603 in Centaurus

    Full text link
    In an attempt to use Cepheid variables to determine the distance to the Centaurus cluster, we have obtained images of NGC 4603 with the Hubble Space Telescope on 9 epochs using WFPC2 and the F555W and F814W filters. This galaxy has been suggested to lie within the ``Cen30'' portion of the cluster and is the most distant object for which this method has been attempted. Previous distance estimates for Cen30 have varied significantly and some have presented disagreements with the peculiar velocity predicted from redshift surveys, motivating this investigation. Using our observations, we have found 61 candidate Cepheid variable stars; however, a significant fraction of these candidates are likely to be nonvariable stars whose magnitude measurement errors happen to fit a Cepheid light curve of significant amplitude for some choice of period and phase. Through a maximum likelihood technique, we determine that we have observed 43 +/- 7 real Cepheids and that NGC 4603 has a distance modulus of 32.61 +0.11/-0.10 (random, 1 sigma) +0.24/-0.25 (systematic, adding in quadrature), corresponding to a distance of 33.3 Mpc. This is consistent with a number of recent estimates of the distance to NGC 4603 or Cen30 and implies a small peculiar velocity consistent with predictions from the IRAS 1.2 Jy redshift survey if the galaxy lies in the foreground of the cluster.Comment: Accepted for publication in the Astrophysical Journal. 17 pages with 17 embedded figures and 3 tables using emulateapj.sty. Additional figures and images may be obtained from http://astro.berkeley.edu/~marc/n4603

    Stellar mass functions of galaxies at 4<z<7 from an IRAC-selected sample in COSMOS/UltraVISTA: limits on the abundance of very massive galaxies

    Get PDF
    We build a Spitzer IRAC complete catalog of objects, obtained by complementing the KsK_\mathrm{s}-band selected UltraVISTA catalog with objects detected in IRAC only. With the aim of identifying massive (i.e., log(M/M)>11\log(M_*/M_\odot)>11) galaxies at 4<z<74<z<7, we consider the systematic effects on the measured photometric redshifts from the introduction of an old and dusty SED template and from the introduction of a bayesian prior taking into account the brightness of the objects, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in the recovery of stellar population parameters. We show that our results are most affected by the bayesian luminosity prior, while nebular emission lines and SFHs only introduce a small dispersion in the measurements. Specifically, the number of 4<z<74<z<7 galaxies ranges from 52 to 382 depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at 4<z<74<z<7. Given the rarity of very massive galaxies in the early universe, major contributions to the total error budget come from cosmic variance and poisson noise. The SMF obtained without the introduction of the bayesian luminosity prior does not show any evolution from z6.5z\sim6.5 to z3.5z\sim 3.5, implying that massive galaxies could already be present when the Universe was 0.9\sim0.9~Gyr old. However, the introduction of the bayesian luminosity prior reduces the number of z>4z>4 galaxies with best fit masses log(M/M)>11\log(M_*/M_\odot)>11 by 83%, implying a rapid growth of very massive galaxies in the first 1.5 Gyr of cosmic history. From the stellar-mass complete sample, we identify one candidate of a very massive (log(M/M)11.5\log(M_*/M_\odot)\sim11.5), quiescent galaxy at z5.4z\sim5.4, with MIPS 24μ24\mum detection suggesting the presence of a powerful obscured AGN.Comment: 23 pages, 18 figures. ApJ accepte

    Improved background subtraction for the Sloan Digital Sky Survey images

    Full text link
    We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a smooth function to the variation of the sky background. This procedure has been applied to all SDSS-III Data Release 8 images, and the results are available as part of that data set. We have tested the effect of our background subtraction on the photometry of large galaxies by inserting fake galaxies into the raw pixels, reanalyzing the data, and measuring them after background subtraction. Our technique results in no size-dependent bias in galaxy fluxes up to half-light radii of 100 arcsec; in contrast, for galaxies of that size the standard SDSS photometric catalog underestimates fluxes by about 1.5 mag. Our results represent a substantial improvement over the standard SDSS catalog results and should form the basis of any analysis of nearby galaxies using the SDSS imaging data.Comment: accepted by the Astronomical Journa
    corecore