577 research outputs found

    Preliminary study of Augmented Reality based manufacturing for further integration of Quality Control 4.0 supported by metrology

    Get PDF
    Augmented Reality (AR) is a key technology enabling Industry 4.0, which enriches human perspectives by overlaying digital information onto the real world. The maturity of AR technology has grown recently. As processes in the automotive and aeronautic sectors require high quality and near-zero error rates to ensure the safety of end-users, AR can be implemented to facilitate workers with immersive interfaces to enhance productivity, accuracy and autonomy in the quality sector. In order to analyse whether there is a real and growing interest in the use of AR as assisting technology for manufacturing sector in general and quality control in particular, two specific research questions are defined. In addition, two well-known research databases (Scopus, Web of Science) are used for the paper selection phase in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to conduct a preliminary study and evaluate the current development of AR applications in manufacturing sector in order to answer the defined questions. It is found that while the development of AR technology has widely implemented to assign real-time information to several systems and processes in assembly and maintenance sectors, this tendency has only emerged in the quality sector over the last few years. However, AR-based quality control has proved its advantages in improving productivity, accuracy and precision of operators as well as benefits to manufacturing in terms of product and process quality control across different manufacturing phases

    Study of Augmented Reality based manufacturing for further integration of quality control 4.0: a systematic literature review

    Get PDF
    Augmented Reality (AR) has gradually become a mainstream technology enabling Industry 4.0 and its maturity has also grown over time. AR has been applied to support different processes on the shop-floor level, such as assembly, maintenance, etc. As various processes in manufacturing require high quality and near-zero error rates to ensure the demands and safety of end-users, AR can also equip operators with immersive interfaces to enhance productivity, accuracy and autonomy in the quality sector. However, there is currently no systematic review paper about AR technology enhancing the quality sector. The purpose of this paper is to conduct a systematic literature review (SLR) to conclude about the emerging interest in using AR as an assisting technology for the quality sector in an industry 4.0 context. Five research questions (RQs), with a set of selection criteria, are predefined to support the objectives of this SLR. In addition, different research databases are used for the paper identification phase following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology to find the answers for the predefined RQs. It is found that, in spite of staying behind the assembly and maintenance sector in terms of AR-based solutions, there is a tendency towards interest in developing and implementing AR-assisted quality applications. There are three main categories of current AR-based solutions for quality sector, which are AR-based apps as a virtual Lean tool, AR-assisted metrology and AR-based solutions for in-line quality control. In this SLR, an AR architecture layer framework has been improved to classify articles into different layers which are finally integrated into a systematic design and development methodology for the development of long-term AR-based solutions for the quality sector in the future

    Augmented reality in support of intelligent manufacturing – A systematic literature review

    Get PDF
    Industry increasingly moves towards digitally enabled ‘smart factories’ that utilise the internet of things (IoT) to realise intelligent manufacturing concepts like predictive maintenance or extensive machine to machine communication. A core technology to facilitate human integration in such a system is augmented reality (AR), which provides people with an interface to interact with the digital world of a smart factory. While AR is not ready yet for industrial deployment in some areas, it is already used in others. To provide an overview of research activities concerning AR in certain shop floor operations, a total of 96 relevant papers from 2011 to 2018 are reviewed. This paper presents the state of the art, the current challenges, and future directions of manufacturing related AR research through a systematic literature review and a citation network analysis. The results of this review indicate that the context of research concerning AR gets increasingly broader, especially by addressing challenges when implementing AR solutions.No funding was received

    A Framework for Extended Reality System Development in Manufacturing

    Get PDF
    This paper presents a framework for developing extended reality (XR) systems within manufacturing context. The aim of this study is to develop a systematic framework to improve the usability and user acceptance of future XR systems. So that manufacturing industry can move from the “wow effect” of XR demonstrators into the stage whereas XR systems can be successfully integrated and improve the conventional work routines. It is essential to ensure the usability and user acceptance of XR systems for the wider adoption in manufacturing. The proposed framework was developed through six case studies that covered different XR system developments for different application areas of manufacturing. The framework consists of five iterative phases: (1) requirements analysis, (2) solution selection, (3) data preparation, (4) system implementation and (5) system evaluation. It is validated through one empirical case and seven identified previous studies, which partly aligned with the proposed framework. The proposed framework provides a clear guideline on the steps needed to integrate XR in manufacturing and it extends the XR usage with increased usability and user acceptance. Furthermore, it strengthens the importance of user-centered approach for XR system development in manufacturing

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Wearable and interactive mixed reality solutions for fault diagnosis and assistance in manufacturing systems: Implementation and testing in an aseptic bottling line

    Get PDF
    Thanks to the spread of technologies stemming from the fourth industrial revolution, also the topic of fault diagnosis and assistance in industrial contexts has benefited. Indeed, several smart tools were developed for assisting with maintenance and troubleshooting, without interfering with operations and facilitating tasks. In line with that, the present manuscript aims at presenting a web smart solution with two possible applications installed on an Android smartphone and Microsoft HoloLens. The solution aims at alerting the operators when an alarm occurs on a machine through notifications, and then at providing the instructions needed for solving the alarm detected. The two devices were tested by the operators of an industrial aseptic bottling line consisting of five machines in real working conditions. The usability of both devices was positively rated by these users based on the System Usability Scale (SUS) and additional appropriate statements. Moreover, the in situ application brought out the main difficulties and interesting issues for the practical implementation of the solutions tested

    The 1st Advanced Manufacturing Student Conference (AMSC21) Chemnitz, Germany 15–16 July 2021

    Get PDF
    The Advanced Manufacturing Student Conference (AMSC) represents an educational format designed to foster the acquisition and application of skills related to Research Methods in Engineering Sciences. Participating students are required to write and submit a conference paper and are given the opportunity to present their findings at the conference. The AMSC provides a tremendous opportunity for participants to practice critical skills associated with scientific publication. Conference Proceedings of the conference will benefit readers by providing updates on critical topics and recent progress in the advanced manufacturing engineering and technologies and, at the same time, will aid the transfer of valuable knowledge to the next generation of academics and practitioners. *** The first AMSC Conference Proceeding (AMSC21) addressed the following topics: Advances in “classical” Manufacturing Technologies, Technology and Application of Additive Manufacturing, Digitalization of Industrial Production (Industry 4.0), Advances in the field of Cyber-Physical Systems, Virtual and Augmented Reality Technologies throughout the entire product Life Cycle, Human-machine-environment interaction and Management and life cycle assessment.:- Advances in “classical” Manufacturing Technologies - Technology and Application of Additive Manufacturing - Digitalization of Industrial Production (Industry 4.0) - Advances in the field of Cyber-Physical Systems - Virtual and Augmented Reality Technologies throughout the entire product Life Cycle - Human-machine-environment interaction - Management and life cycle assessmen

    Wearable and interactive mixed reality solutions for fault diagnosis and assistance in manufacturing systems: Implementation and testing in an aseptic bottling line

    Get PDF
    Abstract Thanks to the spread of technologies stemming from the fourth industrial revolution, also the topic of fault diagnosis and assistance in industrial contexts has benefited. Indeed, several smart tools were developed for assisting with maintenance and troubleshooting, without interfering with operations and facilitating tasks. In line with that, the present manuscript aims at presenting a web smart solution with two possible applications installed on an Android smartphone and Microsoft HoloLens. The solution aims at alerting the operators when an alarm occurs on a machine through notifications, and then at providing the instructions needed for solving the alarm detected. The two devices were tested by the operators of an industrial aseptic bottling line consisting of five machines in real working conditions. The usability of both devices was positively rated by these users based on the System Usability Scale (SUS) and additional appropriate statements. Moreover, the in situ application brought out the main difficulties and interesting issues for the practical implementation of the solutions tested

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation

    Engineering for a changing world: 60th Ilmenau Scientific Colloquium, Technische UniversitÀt Ilmenau, September 04-08, 2023 : programme

    Get PDF
    In 2023, the Ilmenau Scientific Colloquium is once more organised by the Department of Mechanical Engineering. The title of this year’s conference “Engineering for a Changing World” refers to limited natural resources of our planet, to massive changes in cooperation between continents, countries, institutions and people – enabled by the increased implementation of information technology as the probably most dominant driver in many fields. The Colloquium, supplemented by workshops, is characterised but not limited to the following topics: – Precision engineering and measurement technology Nanofabrication – Industry 4.0 and digitalisation in mechanical engineering – Mechatronics, biomechatronics and mechanism technology – Systems engineering – Productive teaming - Human-machine collaboration in the production environment The topics are oriented on key strategic aspects of research and teaching in Mechanical Engineering at our university
    • 

    corecore