87 research outputs found

    3D printing of porous scaffolds with controlled porosity and pore size values

    Get PDF
    3D printed scaffolds can be used, for example, in medical applications for simulating body tissues or for manufacturing prostheses. However, it is difficult to print porous structures of specific porosity and pore size values with fused deposition modelling (FDM) technology. The present paper provides a methodology to design porous structures to be printed. First, a model is defined with some theoretical parallel planes, which are bounded within a geometrical figure, for example a disk. Each plane has randomly distributed points on it. Then, the points are joined with lines. Finally, the lines are given a certain volume and the structure is obtained. The porosity of the structure depends on three geometrical variables: the distance between parallel layers, the number of columns on each layer and the radius of the columns. In order to obtain mathematical models to relate the variables with three responses, the porosity, the mean of pore diameter and the variance of pore diameter of the structures, design of experiments with three-level factorial analysis was used. Finally, multiobjective optimization was carried out by means of the desirability function method. In order to favour fixation of the structures by osseointegration, porosity range between 0.5 and 0.75, mean of pore size between 0.1 and 0.3 mm, and variance of pore size between 0.000 and 0.010 mm2 were selected. Results showed that the optimal solution consists of a structure with a height between layers of 0.72 mm, 3.65 points per mm2 and a radius of 0.15 mm. It was observed that, given fixed height and radius values, the three responses decrease with the number of points per surface unit. The increase of the radius of the columns implies the decrease of the porosity and of the mean of pore size. The decrease of the height between layers leads to a sharper decrease of both the porosity and the mean of pore size. In order to compare calculated and experimental values, scaffolds were printed in polylactic acid (PLA) with FDM technology. Porosity and pore size were measured with X-ray tomography. Average value of measured porosity was 0.594, while calculated porosity was 0.537. Average value of measured mean of pore size was 0.372 mm, while calculated value was 0.434 mm. Average value of variance of pore size was 0.048 mm2, higher than the calculated one of 0.008 mm2. In addition, both round and elongated pores were observed in the printed structures. The current methodology allows designing structures with different requirements for porosity and pore size. In addition, it can be applied to other responses. It will be very useful in medical applications such as the simulation of body tissues or the manufacture of prostheses.Peer ReviewedPostprint (published version

    High-efficiency texture coding and synthesis on point-based pear surface

    Get PDF
    © 2017 IOS Press and the authors. The fruit images on points cloud acquired by the current 3D scanner from field will appear a visible seams, inconvenient data acquisition or taking large space due to unorganized background. We give a SAOW method to cope with the space efficiency and realistic effects of texture synthesis on pear point model. At first, a point-quadtree is proposed to simplify the pear image division. Then, an adaptive multi-granularity morton coding scheme are presented to optimizing the memory space of pear image. At last, weighted oversampling mixing method is mainly focused on texture quality of pear surface. As shown in the experiment results, our adaptive division makes the memory space decline dramatically about 90.7% than non-division and 92.9% than general division respectively; adaptive code scheme helps to reduce the memory to 72.1% of ordinary morton code; weighted oversampling keeps the mixed texture more real and smoothly than current methods

    An innovative methodology for the development of information systems with an application to the Teachers Training College in Makkah Al-Mukkaramah, Saudi Arabia

    Get PDF
    The main aim of the Teachers' Training College (ITC) in Makkah Al-Mukkaramah, Saudi Arabia, is to develop an interest in scientific research and reading, and to conduct meaningful conversations so that pupils are trained to be good housewives, experienced researchers and professional educators in order to use their abilities to develop the Saudi community scientifically, socially, mentally and physically. The information system at TTC has a number of problems, particularly difficulties which are connected to the rapid increase in student records, the duplication of records, the fact that student information is distributed in different departments, the lack of information control, the insufficient number of information professionals, the lack of training, the shortcomings in satisfying user needs, deficiencies in the ICT infrastructure, and the absence of security planning. The senior management of the Teachers' Training College knows that the organisation has information-related problems, with information overload being a particularly prominent issue. However, these managers seem powerless to identify the root causes, being neither able to identify the source of the problems nor the people responsible for them. This research aims to study the methodological context in which recommendations for change can be made, and to apply an appropriate methodology (or multimethodology) to the development of an information system for use in the Teachers' Training College in Makkah Al-Mukkaramah. [Continues.

    On 3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report
    corecore