746 research outputs found

    Algorithms Implemented for Cancer Gene Searching and Classifications

    Get PDF
    Understanding the gene expression is an important factor to cancer diagnosis. One target of this understanding is implementing cancer gene search and classification methods. However, cancer gene search and classification is a challenge in that there is no an obvious exact algorithm that can be implemented individually for various cancer cells. In this paper a research is con-ducted through the most common top ranked algorithms implemented for cancer gene search and classification, and how they are implemented to reach a better performance. The paper will distinguish algorithms implemented for Bio image analysis for cancer cells and algorithms implemented based on DNA array data. The main purpose of this paper is to explore a road map towards presenting the most current algorithms implemented for cancer gene search and classification

    Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis

    Get PDF
    Background and Objectives: This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. Methods: In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. Results: It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Sup- port Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). Conclusions: It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society

    Effective Prostate Cancer Detection using Enhanced Particle Swarm Optimization Algorithm with Random Forest on the Microarray Data

    Get PDF
    Prostate Cancer (PC) is the leading cause of mortality among males, therefore an effective system is required for identifying the sensitive bio-markers for early recognition. The objective of the research is to find the potential bio-markers for characterizing the dissimilar types of PC. In this article, the PC-related genes are acquired from the Gene Expression Omnibus (GEO) database. Then, gene selection is accomplished using enhanced Particle Swarm Optimization (PSO) to select the active genes, which are related to the PC. In the enhanced PSO algorithm, the interval-newton approach is included to keep the search space adaptive by varying the swarm diversity that helps to perform the local search significantly. The selected active genes are fed to the random forest classifier for the classification of PC (high and low-risk). As seen in the experimental investigation, the proposed model achieved an overall classification accuracy of 96.71%, which is better compared to the traditional models like naïve Bayes, support vector machine and neural network

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Feature Selection Approach based on Firefly Algorithm and Chi-square

    Get PDF
    Dimensionality problem is a well-known challenging issue for most classifiers in which datasets have unbalanced number of samples and features. Features may contain unreliable data which may lead the classification process to produce undesirable results. Feature selection approach is considered a solution for this kind of problems. In this paperan enhanced firefly algorithm is proposed to serve as a feature selection solution for reducing dimensionality and picking the most informative features to be used in classification. The main purpose of the proposedmodel is to improve the classification accuracy through using the selected features produced from the model, thus classification errors will decrease. Modeling firefly in this research appears through simulating firefly position by cell chi-square value which is changed after every move, and simulating firefly intensity by calculating a set of different fitness functionsas a weight for each feature. K-nearest neighbor and Discriminant analysis are used as classifiers to test the proposed firefly algorithm in selecting features. Experimental results showed that the proposed enhanced algorithmbased on firefly algorithm with chi-square and different fitness functions can provide better results than others. Results showed that reduction of dataset is useful for gaining higher accuracy in classification

    The importance of data classification using machine learning methods in microarray data

    Get PDF
    The detection of genetic mutations has attracted global attention. several methods have proposed to detect diseases such as cancers and tumours. One of them is microarrays, which is a type of representation for gene expression that is helpful in diagnosis. To unleash the full potential of microarrays, machine-learning algorithms and gene selection methods can be implemented to facilitate processing on microarrays and to overcome other potential challenges. One of these challenges involves high dimensional data that are redundant, irrelevant, and noisy. To alleviate this problem, this representation should be simplified. For example, the feature selection process can be implemented by reducing the number of features adopted in clustering and classification. A subset of genes can be selected from a pool of gene expression data recorded on DNA micro-arrays. This paper reviews existing classification techniques and gene selection methods. The effectiveness of emerging techniques, such as the swarm intelligence technique in feature selection and classification in microarrays, are reported as well. These emerging techniques can be used in detecting cancer. The swarm intelligence technique can be combined with other statistical methods for attaining better results

    Memetic micro-genetic algorithms for cancer data classification

    Get PDF
    Fast and precise medical diagnosis of human cancer is crucial for treatment decisions. Gene selection consists of identifying a set of informative genes from microarray data to allow high predictive accuracy in human cancer classification. This task is a combinatorial search problem, and optimisation methods can be applied for its resolution. In this paper, two memetic micro-genetic algorithms (MμV1 and MμV2) with different hybridisation approaches are proposed for feature selection of cancer microarray data. Seven gene expression datasets are used for experimentation. The comparison with stochastic state-of-the-art optimisation techniques concludes that problem-dependent local search methods combined with micro-genetic algorithms improve feature selection of cancer microarray data.Fil: Rojas, Matias Gabriel. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Lujan. Centro de Investigacion Docencia y Extension En Tecnologias de la Informacion y Las Comunicaciones.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Vidal, Pablo Javier. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentin

    An Ontology-based Two-Stage Approach to Medical Text Classification with Feature Selection by Particle Swarm Optimisation

    Full text link
    © 2019 IEEE. Document classification (DC) is the task of assigning pre-defined labels to unseen documents by utilizing a model trained on the available labeled documents. DC has attracted much attention in medical fields recently because many issues can be formulated as a classification problem. It can assist doctors in decision making and correct decisions can reduce the medical expenses. Medical documents have special attributes that distinguish them from other texts and make them difficult to analyze. For example, many acronyms and abbreviations, and short expressions make it more challenging to extract information. The classification accuracy of the current medical DC methods is not satisfactory. The goal of this work is to enhance the input feature sets of the DC method to improve the accuracy. To approach this goal, a novel two-stage approach is proposed. In the first stage, a domain-specific dictionary, namely the Unified Medical Language System (UMLS), is employed to extract the key features belonging to the most relevant concepts such as diseases or symptoms. In the second stage, PSO is applied to select more related features from the extracted features in the first stage. The performance of the proposed approach is evaluated on the 2010 Informatics for Integrating Biology and the Bedside (i2b2) data set which is a widely used medical text dataset. The experimental results show substantial improvement by the proposed method on the accuracy of classification
    corecore