64 research outputs found

    Enhancing human motion perception in model predictive motion cueing algorithm

    Full text link
    In this research, the predictive motion cueing algorithm has been optimized for improving a human driver sensation based on the mathematical model. The Model Predictive Control cost function and the prediction and control horizons are optimized. The future trajectory is predicted by artificial intelligence and the related control actions are applied beforehand in real-time

    Autonomous Collision Avoidance Using MPC with LQR-Based Weight Transformation

    Get PDF
    Model predictive control (MPC) is a multi-objective control technique that can handle system constraints. However, the performance of an MPC controller highly relies on a proper prioritization weight for each objective, which highlights the need for a precise weight tuning technique. In this paper, we propose an analytical tuning technique by matching the MPC controller performance with the performance of a linear quadratic regulator (LQR) controller. The proposed methodology derives the transformation of a LQR weighting matrix with a fixed weighting factor using a discrete algebraic Riccati equation (DARE) and designs an MPC controller using the idea of a discrete time linear quadratic tracking problem (LQT) in the presence of constraints. The proposed methodology ensures optimal performance between unconstrained MPC and LQR controllers and provides a sub-optimal solution while the constraints are active during transient operations. The resulting MPC behaves as the discrete time LQR by selecting an appropriate weighting matrix in the MPC control problem and ensures the asymptotic stability of the system. In this paper, the effectiveness of the proposed technique is investigated in the application of a novel vehicle collision avoidance system that is designed in the form of linear inequality constraints within MPC. The simulation results confirm the potency of the proposed MPC control technique in performing a safe, feasible and collision-free path while respecting the inputs, states and collision avoidance constraints

    Model Predictive Controller Weight Tuning and Real-Time Learning-Based Weight Selection

    Get PDF
    A variety of control systems with specific goals are designed and utilized in every vehicle system. Optimal performance of each of these control systems is essential to keep the vehicle in a safe and desirable driving condition. A model predictive controller (MPC) is a type of control system that employs an internal model of the system being controlled to predict its future behavior and determine the optimal control actions to achieve desired outcomes. The controller works by continuously updating its predictions based on the current state of the system and using an optimization algorithm to calculate the best control actions while satisfying any constraints on the system. In each MPC controller, there is an objective function with a set of weights. These weights can directly affect the response of the system. The appropriate selection of weights results in the generation of an effective control action, which reduces tracking errors to a minimum. In the conventional MPC controllers, the focus is solely on optimizing the control actions, and weight values remain fixed or scheduled for different ranges of system operations. Therefore, the effects of real-time selection of optimum weights in the controller performance are overlooked. This research aims to improve the performance of MPC control systems by developing a weight tuning and real-time weight selection scheme that considers the dynamic system's state. The proposed approach is applied to the vehicle stability control under a variety of environmental and/or driving conditions. The weight tuning is performed by using the prediction model of the vehicle and the Bayesian optimization (BO) technique. The weight selection is carried out in real-time by learning the adjusted weights through Gaussian process regression (GPR). These are two main modules developed to be used for selecting and tuning the weights of an MPC controller. Hence, in addition to optimizing control actions through the MPC controller's optimization problem, the weights of the MPC controller are also assessed and adjusted to achieve the highest level of optimality in the vehicle control system. Furthermore, an authentication process is proposed to evaluate the tuned weights after being selected in the tests. This way, unnecessary increases or decreases in the weights stored in the weight selection dataset can be avoided. To further enhance the model predictions, a blending-based multiple model approach is utilized. In this approach, instead of considering a fixed prediction model with invariant parameters, a combination of finite number of models with different parameters are considered. Based on the prediction error of each model, a weighted sum of matrices of these models are utilized both in the MPC controller and weight tuning modules. To verify the proposed methodology, MATLAB/Simulink and CarSim co-simulations as well as experimental tests are carried out. Comparing the vehicle responses with and without the proposed weight tuning and real-time weight selection approach strongly corroborates the proposed technique in enhancing the controller performance. The capability of the proposed multiple model technique in improving the weight tuning has been demonstrated in the simulations and experimental results

    Intelligent model-based control of complex multi-link mechanisms

    Get PDF
    Complex under-actuated multilink mechanism involves a system whose number of control inputs is smaller than the dimension of the configuration space. The ability to control such a system through the manipulation of its natural dynamics would allow for the design of more energy-efficient machines with the ability to achieve smooth motions similar to those found in the natural world. This research aims to understand the complex nature of the Robogymnast, a triple link underactuated pendulum built at Cardiff University with the purpose of studying the behaviour of non-linear systems and understanding the challenges in developing its control system. A mathematical model of the robot was derived from the Euler-Lagrange equations. The design of the control system was based on the discrete-time linear model around the downward position and a sampling time of 2.5 milliseconds. Firstly, Invasive Weed Optimization (IWO) was used to optimize the swing-up motion of the robot by determining the optimum values of parameters that control the input signals of the Robogymnast’s two motors. The values obtained from IWO were then applied to both simulation and experiment. The results showed that the swing-up motion of the Robogymnast from the stable downward position to the inverted configuration to be successfully achieved. Secondly, due to the complex nature and nonlinearity of the Robogymnast, a novel approach of modelling the Robogymnast using a multi-layered Elman neural ii network (ENN) was proposed. The ENN model was then tested with various inputs and its output were analysed. The results showed that the ENN model to be capable of providing a better representation of the actual system compared to the mathematical model. Thirdly, IWO is used to investigate the optimum Q values of the Linear Quadratic Regulator (LQR) for inverted balance control of the Robogymnast. IWO was used to obtain the optimal Q values required by the LQR to maintain the Robogymnast in an upright configuration. Two fitness criteria were investigated: cost function J and settling time T. A controller was developed using values obtained from each fitness criteria. The results showed that LQRT performed faster but LQRJ was capable of stabilizing the Robogymnast from larger deflection angles. Finally, fitness criteria J and T were used simultaneously to obtain the optimal Q values for the LQR. For this purpose, two multi-objective optimization methods based on the IWO, namely the Weighted Criteria Method IWO (WCMIWO) and the Fuzzy Logic IWO Hybrid (FLIWOH) were developed. Two LQR controllers were first developed using the parameters obtained from the two optimization methods. The same process was then repeated with disturbance applied to the Robogymnast states to develop another two LQR controllers. The response of the controllers was then tested in different scenarios using simulation and their performance was evaluated. The results showed that all four controllers were able to balance the Robogymnast with the fastest settling time achieved by WMCIWO with disturbance followed by in the ascending order: FLIWOH with disturbance, FLIWOH, and WCMIWO

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Acoustic source localisation and tracking using microphone arrays

    Get PDF
    This thesis considers the domain of acoustic source localisation and tracking in an indoor environment. Acoustic tracking has applications in security, human-computer interaction, and the diarisation of meetings. Source localisation and tracking is typically a computationally expensive task, making it hard to process on-line, especially as the number of speakers to track increases. Much of the literature considers single-source localisation, however a practical system must be able to cope with multiple speakers, possibly active simultaneously, without knowing beforehand how many speakers are present. Techniques are explored for reducing the computational requirements of an acoustic localisation system. Techniques to localise and track multiple active sources are also explored, and developed to be more computationally efficient than the current state of the art algorithms, whilst being able to track more speakers. The first contribution is the modification of a recent single-speaker source localisation technique, which improves the localisation speed. This is achieved by formalising the implicit assumption by the modified algorithm that speaker height is uniformly distributed on the vertical axis. Estimating height information effectively reduces the search space where speakers have previously been detected, but who may have moved over the horizontal-plane, and are unlikely to have significantly changed height. This is developed to allow multiple non-simultaneously active sources to be located. This is applicable when the system is given information from a secondary source such as a set of cameras allowing the efficient identification of active speakers rather than just the locations of people in the environment. The next contribution of the thesis is the application of a particle swarm technique to significantly further decrease the computational cost of localising a single source in an indoor environment, compared the state of the art. Several variants of the particle swarm technique are explored, including novel variants designed specifically for localising acoustic sources. Each method is characterised in terms of its computational complexity as well as the average localisation error. The techniques’ responses to acoustic noise are also considered, and they are found to be robust. A further contribution is made by using multi-optima swarm techniques to localise multiple simultaneously active sources. This makes use of techniques which extend the single-source particle swarm techniques to finding multiple optima of the acoustic objective function. Several techniques are investigated and their performance in terms of localisation accuracy and computational complexity is characterised. Consideration is also given to how these metrics change when an increasing number of active speakers are to be localised. Finally, the application of the multi-optima localisation methods as an input to a multi-target tracking system is presented. Tracking multiple speakers is a more complex task than tracking single acoustic source, as observations of audio activity must be associated in some way with distinct speakers. The tracker used is known to be a relatively efficient technique, and the nature of the multi-optima output format is modified to allow the application of this technique to the task of speaker tracking
    • …
    corecore