15,769 research outputs found

    Bandwidth Extension on Raw Audio via Generative Adversarial Networks

    Full text link
    Neural network-based methods have recently demonstrated state-of-the-art results on image synthesis and super-resolution tasks, in particular by using variants of generative adversarial networks (GANs) with supervised feature losses. Nevertheless, previous feature loss formulations rely on the availability of large auxiliary classifier networks, and labeled datasets that enable such classifiers to be trained. Furthermore, there has been comparatively little work to explore the applicability of GAN-based methods to domains other than images and video. In this work we explore a GAN-based method for audio processing, and develop a convolutional neural network architecture to perform audio super-resolution. In addition to several new architectural building blocks for audio processing, a key component of our approach is the use of an autoencoder-based loss that enables training in the GAN framework, with feature losses derived from unlabeled data. We explore the impact of our architectural choices, and demonstrate significant improvements over previous works in terms of both objective and perceptual quality

    Deep Generative Adversarial Compression Artifact Removal

    Full text link
    Compression artifacts arise in images whenever a lossy compression algorithm is applied. These artifacts eliminate details present in the original image, or add noise and small structures; because of these effects they make images less pleasant for the human eye, and may also lead to decreased performance of computer vision algorithms such as object detectors. To eliminate such artifacts, when decompressing an image, it is required to recover the original image from a disturbed version. To this end, we present a feed-forward fully convolutional residual network model trained using a generative adversarial framework. To provide a baseline, we show that our model can be also trained optimizing the Structural Similarity (SSIM), which is a better loss with respect to the simpler Mean Squared Error (MSE). Our GAN is able to produce images with more photorealistic details than MSE or SSIM based networks. Moreover we show that our approach can be used as a pre-processing step for object detection in case images are degraded by compression to a point that state-of-the art detectors fail. In this task, our GAN method obtains better performance than MSE or SSIM trained networks.Comment: ICCV 2017 Camera Ready + Acknowledgement

    UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content

    Full text link
    Recent years have witnessed an explosion of user-generated content (UGC) videos shared and streamed over the Internet, thanks to the evolution of affordable and reliable consumer capture devices, and the tremendous popularity of social media platforms. Accordingly, there is a great need for accurate video quality assessment (VQA) models for UGC/consumer videos to monitor, control, and optimize this vast content. Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of UGC content are unpredictable, complicated, and often commingled. Here we contribute to advancing the UGC-VQA problem by conducting a comprehensive evaluation of leading no-reference/blind VQA (BVQA) features and models on a fixed evaluation architecture, yielding new empirical insights on both subjective video quality studies and VQA model design. By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models to create a new fusion-based BVQA model, which we dub the \textbf{VID}eo quality \textbf{EVAL}uator (VIDEVAL), that effectively balances the trade-off between VQA performance and efficiency. Our experimental results show that VIDEVAL achieves state-of-the-art performance at considerably lower computational cost than other leading models. Our study protocol also defines a reliable benchmark for the UGC-VQA problem, which we believe will facilitate further research on deep learning-based VQA modeling, as well as perceptually-optimized efficient UGC video processing, transcoding, and streaming. To promote reproducible research and public evaluation, an implementation of VIDEVAL has been made available online: \url{https://github.com/tu184044109/VIDEVAL_release}.Comment: 13 pages, 11 figures, 11 table

    Multi-measures fusion based on multi-objective genetic programming for full-reference image quality assessment

    Full text link
    In this paper, we exploit the flexibility of multi-objective fitness functions, and the efficiency of the model structure selection ability of a standard genetic programming (GP) with the parameter estimation power of classical regression via multi-gene genetic programming (MGGP), to propose a new fusion technique for image quality assessment (IQA) that is called Multi-measures Fusion based on Multi-Objective Genetic Programming (MFMOGP). This technique can automatically select the most significant suitable measures, from 16 full-reference IQA measures, used in aggregation and finds weights in a weighted sum of their outputs while simultaneously optimizing for both accuracy and complexity. The obtained well-performing fusion of IQA measures are evaluated on four largest publicly available image databases and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other state-of-the-art recently developed fusion approaches

    Perceptual Quality Assessment of Omnidirectional Images as Moving Camera Videos

    Full text link
    Omnidirectional images (also referred to as static 360{\deg} panoramas) impose viewing conditions much different from those of regular 2D images. How do humans perceive image distortions in immersive virtual reality (VR) environments is an important problem which receives less attention. We argue that, apart from the distorted panorama itself, two types of VR viewing conditions are crucial in determining the viewing behaviors of users and the perceived quality of the panorama: the starting point and the exploration time. We first carry out a psychophysical experiment to investigate the interplay among the VR viewing conditions, the user viewing behaviors, and the perceived quality of 360{\deg} images. Then, we provide a thorough analysis of the collected human data, leading to several interesting findings. Moreover, we propose a computational framework for objective quality assessment of 360{\deg} images, embodying viewing conditions and behaviors in a delightful way. Specifically, we first transform an omnidirectional image to several video representations using different user viewing behaviors under different viewing conditions. We then leverage advanced 2D full-reference video quality models to compute the perceived quality. We construct a set of specific quality measures within the proposed framework, and demonstrate their promises on three VR quality databases.Comment: 11 pages, 11 figure, 9 tables. This paper has been accepted by IEEE Transactions on Visualization and Computer Graphic

    Learning to Predict Streaming Video QoE: Distortions, Rebuffering and Memory

    Full text link
    Mobile streaming video data accounts for a large and increasing percentage of wireless network traffic. The available bandwidths of modern wireless networks are often unstable, leading to difficulties in delivering smooth, high-quality video. Streaming service providers such as Netflix and YouTube attempt to adapt their systems to adjust in response to these bandwidth limitations by changing the video bitrate or, failing that, allowing playback interruptions (rebuffering). Being able to predict end user' quality of experience (QoE) resulting from these adjustments could lead to perceptually-driven network resource allocation strategies that would deliver streaming content of higher quality to clients, while being cost effective for providers. Existing objective QoE models only consider the effects on user QoE of video quality changes or playback interruptions. For streaming applications, adaptive network strategies may involve a combination of dynamic bitrate allocation along with playback interruptions when the available bandwidth reaches a very low value. Towards effectively predicting user QoE, we propose Video Assessment of TemporaL Artifacts and Stalls (Video ATLAS): a machine learning framework where we combine a number of QoE-related features, including objective quality features, rebuffering-aware features and memory-driven features to make QoE predictions. We evaluated our learning-based QoE prediction model on the recently designed LIVE-Netflix Video QoE Database which consists of practical playout patterns, where the videos are afflicted by both quality changes and rebuffering events, and found that it provides improved performance over state-of-the-art video quality metrics while generalizing well on different datasets. The proposed algorithm is made publicly available at http://live.ece.utexas.edu/research/Quality/VideoATLAS release_v2.rar.Comment: under review in Transactions on Image Processin

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey

    Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and Wild

    Full text link
    Performance of blind image quality assessment (BIQA) models has been significantly boosted by end-to-end optimization of feature engineering and quality regression. Nevertheless, due to the distributional shift between images simulated in the laboratory and captured in the wild, models trained on databases with synthetic distortions remain particularly weak at handling realistic distortions (and vice versa). To confront the cross-distortion-scenario challenge, we develop a \textit{unified} BIQA model and an approach of training it for both synthetic and realistic distortions. We first sample pairs of images from individual IQA databases, and compute a probability that the first image of each pair is of higher quality. We then employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs. We also explicitly enforce a hinge constraint to regularize uncertainty estimation during optimization. Extensive experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild. In addition, we demonstrate the universality of the proposed training strategy by using it to improve existing BIQA models.Comment: Accepted to IEEE TIP. The implementations are available at https://github.com/zwx8981/UNIQU

    DNN-Based Source Enhancement to Increase Objective Sound Quality Assessment Score

    Get PDF
    We propose a training method for deep neural network (DNN)-based source enhancement to increase objective sound quality assessment (OSQA) scores such as the perceptual evaluation of speech quality (PESQ). In many conventional studies, DNNs have been used as a mapping function to estimate time-frequency masks and trained to minimize an analytically tractable objective function such as the mean squared error (MSE). Since OSQA scores have been used widely for soundquality evaluation, constructing DNNs to increase OSQA scores would be better than using the minimum-MSE to create highquality output signals. However, since most OSQA scores are not analytically tractable, i.e., they are black boxes, the gradient of the objective function cannot be calculated by simply applying back-propagation. To calculate the gradient of the OSQA-based objective function, we formulated a DNN optimization scheme on the basis of black-box optimization, which is used for training a computer that plays a game. For a black-box-optimization scheme, we adopt the policy gradient method for calculating the gradient on the basis of a sampling algorithm. To simulate output signals using the sampling algorithm, DNNs are used to estimate the probability-density function of the output signals that maximize OSQA scores. The OSQA scores are calculated from the simulated output signals, and the DNNs are trained to increase the probability of generating the simulated output signals that achieve high OSQA scores. Through several experiments, we found that OSQA scores significantly increased by applying the proposed method, even though the MSE was not minimized

    JND-SalCAR: A Novel JND-based Saliency-Channel Attention Residual Network for Image Quality Prediction

    Full text link
    In image quality enhancement processing, it is the most important to predict how humans perceive processed images since human observers are the ultimate receivers of the images. Thus, objective image quality assessment (IQA) methods based on human visual sensitivity from psychophysical experiments have been extensively studied. Thanks to the powerfulness of deep convolutional neural networks (CNN), many CNN based IQA models have been studied. However, previous CNN-based IQA models have not fully utilized the characteristics of human visual systems (HVS) for IQA problems by simply entrusting everything to CNN where the CNN-based models are often trained as a regressor to predict the scores of subjective quality assessment obtained from IQA datasets. In this paper, we propose a novel JND-based saliency-channel attention residual network for image quality assessment, called JND-SalCAR, where the human psychophysical characteristics such as visual saliency and just noticeable difference (JND) are effectively incorporated. We newly propose a SalCAR block so that perceptually important features can be extracted by using a saliency-based spatial attention and a channel attention. In addition, the visual saliency map is further used as a guideline for predicting the patch weight map in order to afford a stable training of end-to-end optimization for the JND-SalCAR. To our best knowledge, our work is the first HVS-inspired trainable IQA network that considers both the visual saliency and JND characteristics of HVS. We evaluate the proposed JND-SalCAR on large IQA datasets where it outperforms all the recent state-of-the-art IQA methods
    • …
    corecore