596 research outputs found

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Unsupervised spectral sub-feature learning for hyperspectral image classification

    Get PDF
    Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods

    Manifold learning based spectral unmixing of hyperspectral remote sensing data

    Get PDF
    Nonlinear mixing effects inherent in hyperspectral data are not properly represented in linear spectral unmixing models. Although direct nonlinear unmixing models provide capability to capture nonlinear phenomena, they are difficult to formulate and the results are not always generalizable. Manifold learning based spectral unmixing accommodates nonlinearity in the data in the feature extraction stage followed by linear mixing, thereby incorporating some characteristics of nonlinearity while retaining advantages of linear unmixing approaches. Since endmember selection is critical to successful spectral unmixing, it is important to select proper endmembers from the manifold space. However, excessive computational burden hinders development of manifolds for large-scale remote sensing datasets. This dissertation addresses issues related to high computational overhead requirements of manifold learning for developing representative manifolds for the spectral unmixing task. Manifold approximations using landmarks are popular for mitigating the computational complexity of manifold learning. A new computationally effective landmark selection method that exploits spatial redundancy in the imagery is proposed. A robust, less costly landmark set with low spectral and spatial redundancy is successfully incorporated with a hybrid manifold which shares properties of both global and local manifolds. While landmark methods reduce computational demand, the resulting manifolds may not represent subtle features of the manifold adequately. Active learning heuristics are introduced to increase the number of landmarks, with the goal of developing more representative manifolds for spectral unmixing. By communicating between the landmark set and the query criteria relative to spectral unmixing, more representative and stable manifolds with less spectrally and spatially redundant landmarks are developed. A new ranking method based on the pixels with locally high spectral variability within image subsets and convex-geometry finds a solution more quickly and precisely. Experiments were conducted to evaluate the proposed methods using the AVIRIS Cuprite hyperspectral reference dataset. A case study of manifold learning based spectral unmixing in agricultural areas is included in the dissertation.Remotely sensed data collected by airborne or spaceborne sensors are utilized to quantify crop residue cover over an extensive area. Although remote sensing indices are popular for characterizing residue amounts, they are not effective with noisy Hyperion data because the effect of residual striping artifacts is amplified in ratios involving band differences. In this case study, spectral unmixing techniques are investigated for estimating crop residue as an alternative approach to empirical models developed using band based indices. The spectral unmixing techniques, and especially the manifold learning approaches, provide more robust, lower RMSE estimates for crop residue cover than the hyperspectral index based method for Hyperion data

    Improved Time Series Land Cover Classification by Missing-Observation-Adaptive Nonlinear Dimensionality Reduction

    Get PDF
    Dimensionality reduction (DR) is a widely used technique to address the curse of dimensionality when high-dimensional remotely sensed data, such as multi-temporal or hyperspectral imagery, are analyzed. Nonlinear DR algorithms, also referred to as manifold learning algorithms, have been successfully applied to hyperspectral data and provide improved performance compared with linear DR algorithms. However, DR algorithms cannot handle missing data that are common in multi-temporal imagery. In this paper, the Laplacian Eigenmaps (LE) nonlinear DR algorithm was refined for application to multi-temporal satellite data with large proportions of missing data. Refined LE algorithms were applied to 52-week Landsat time series for three study areas in Texas, Kansas and South Dakota that have different amounts of missing data and land cover complexity. A series of random forest classifications were conducted on the refined LE DR bands using varying proportions of training data provided by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL); these classification results were compared with conventional metrics-based random forest classifications. Experimental results show that compared with the metrics approach, higher per-class and overall classification accuracies were obtained using the refined LE DR bands of multispectral reflectance time series, and the number of training samples required to achieve a given degree of classification accuracy was also reduced. The approach of applying the refined LE to multispectral reflectance time series is promising in that it is automated and provides dimensionality-reduced data with desirable classification properties. The implications of this research and possibilities for future algorithm development and application are discussed

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Characterization and Reduction of Noise in Manifold Representations of Hyperspectral Imagery

    Get PDF
    A new workflow to produce dimensionality reduced manifold coordinates based on the improvements of landmark Isometric Mapping (ISOMAP) algorithms using local spectral models is proposed. Manifold space from nonlinear dimensionality reduction better addresses the nonlinearity of the hyperspectral data and often has better per- formance comparing to the results of linear methods such as Minimum Noise Fraction (MNF). The dissertation mainly focuses on using adaptive local spectral models to fur- ther improve the performance of ISOMAP algorithms by addressing local noise issues and perform guided landmark selection and nearest neighborhood construction in local spectral subsets. This work could benefit the performance of common hyperspectral image analysis tasks, such as classification, target detection, etc., but also keep the computational burden low. This work is based on and improves the previous ENH- ISOMAP algorithm in various ways. The workflow is based on a unified local spectral subsetting framework. Embedding spaces in local spectral subsets as local noise models are first proposed and used to perform noise estimation, MNF regression and guided landmark selection in a local sense. Passive and active methods are proposed and ver- ified to select landmarks deliberately to ensure local geometric structure coverage and local noise avoidance. Then, a novel local spectral adaptive method is used to construct the k-nearest neighbor graph. Finally, a global MNF transformation in the manifold space is also introduced to further compress the signal dimensions. The workflow is implemented using C++ with multiple implementation optimizations, including using heterogeneous computing platforms that are available in personal computers. The re- sults are presented and evaluated by Jeffries-Matsushita separability metric, as well as the classification accuracy of supervised classifiers. The proposed workflow shows sig- nificant and stable improvements over the dimensionality reduction performance from traditional MNF and ENH-ISOMAP on various hyperspectral datasets. The computa- tional speed of the proposed implementation is also improved
    corecore