452 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Genetic algorithm optimization for dynamic construction site layout planning

    Get PDF
    The dynamic construction site layout planning (DCSLP) problem refers to the efficient placement and relocation of temporary construction facilities within a dynamically changing construction site environment considering the characteristics of facilities and work interrelationships, the shape and topography of the construction site, and the time-varying project needs. A multi-objective dynamic optimization model is developed for this problem that considers construction and relocation costs of facilities, transportation costs of resources moving from one facility to another or to workplaces, as well as safety and environmental considerations resulting from facilities’ operations and interconnections. The latter considerations are taken into account in the form of preferences or constraints regarding the proximity or remoteness of particular facilities to other facilities or work areas. The analysis of multiple project phases and the dynamic facility relocation from phase to phase highly increases the problem size, which, even in its static form, falls within the NP (for Nondeterministic Polynomial time)- hard class of combinatorial optimization problems. For this reason, a genetic algorithm has been implemented for the solution due to its capability to robustly search within a large solution space. Several case studies and operational scenarios have been implemented through the Palisade’s Evolver software for model testing and evaluation. The results indicate satisfactory model response to time-varying input data in terms of solution quality and computation time. The model can provide decision support to site managers, allowing them to examine alternative scenarios and fine-tune optimal solutions according to their experience by introducing desirable preferences or constraints in the decision process

    Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey

    Get PDF
    Facility Layout Problem (FLP) is a NP-hard problem concerned with the arrangement of facilities as to minimize the distance travelled between all pairs of facilities. Many exact and approximate approaches have been proposed with an extensive applicability to deal with this problem. This paper studies the fundamentals of some well-known heuristics and metaheuristics used in solving the FLPs. It is hoped that this paper will trigger researchers for in-depth studies in FLPs looking into more specific interest such as equal or unequal FLPs

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    A Multi-User Interactive Coral Reef Optimization Algorithm for Considering Expert Knowledge in the Unequal Area Facility Layout Problem

    Get PDF
    The problem of Unequal Area Facility Layout Planning (UA-FLP) has been addressed by a large number of approaches considering a set of quantitative criteria. Moreover, more recently, the personal qualitative preferences of an expert designer or decision-maker (DM) have been taken into account too. This article deals with capturing more than a single DM’s personal preferences to obtain a common and collaborative design including the whole set of preferences from all the DMs to obtain more complex, complete, and realistic solutions. To the best of our knowledge, this is the first time that the preferences of more than one expert designer have been considered in the UA-FLP. The new strategy has been implemented on a Coral Reef Optimization (CRO) algorithm using two techniques to acquire the DMs’ evaluations. The first one demands the simultaneous presence of all the DMs, while the second one does not. Both techniques have been tested over three well-known problem instances taken from the literature and the results show that it is possible to obtain sufficient designs capturing all the DMs’ personal preferences and maintaining low values of the quantitative fitness function

    Charged System Search and Magnetic Charged System Search Algorithms for Construction Site Layout Planning Optimization

    Get PDF
    Construction site layout planning can be considered as an effort to place different temporary facilities in available site locations such that multiple objectives are satisfied as much as possible. With the extension of high-rise building construction and construction activities besides the lack of available spaces in construction sites, proper utilization of this resource has been highlighted because of its significant positive influences on direct cost, safety, and security of the site which consequently affects the total cost and schedule of the project. Thus the construction site layout planning is considered as one of the essential and important phases in construction projects. Site layout planning problem is an NP-Hard problem from the viewpoint of complexity. In this research, two prominent meta-heuristic algorithms, namely Charged System Search (CSS) and Magnetic Charged System Search (MCSS) are utilized to optimize the site layout planning problem. The obtained results of implementing these two algorithms for two different types of site space modeling are compared with the results of the Particle Swarm Optimization (PSO) algorithm and also those of the previous studies. The results illustrate the capability of the CSS and MCSS algorithms in solving the present problem

    Using eye-tracking into decision makers evaluation in evolutionary interactive UA-FLP algorithms

    Get PDF
    Unequal area facility layout problem is an important issue in the design of industrial plants, as well as other fields such as hospitals or schools, among others. While participating in an interactive designing process, the human user is required to evaluate a high number of proposed solutions, which produces them fatigue both mental and physical. In this paper, the use of eye-tracking to estimate user’s evaluations from gaze behavior is investigated. The results show that, after a process of training and data taking, it is possible to obtain a good enough estimation of the user’s evaluations which is independent of the problem and of the users as well. These promising results advice to use eye-tracking as a substitute for the mouse during users’ evaluations

    A Hybrid Coral Reefs Optimization – Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) is a relevant optimization problem related to industrial design, that deals with obtaining the most effective allocation of facilities, that make up the rectangular manufacturing plant layout. The UA-FLP is known to be a hard optimization problem, where meta-heuristic approaches are a good option to obtain competitive solutions. Many of these computational approaches, however, usually fall into local optima, and suffer from lack of diversity in their population, mainly due to the huge search spaces and hard fitness landscapes produced by the traditional representation of UA-FLP. To solve these issues, in this paper we propose a novel hybrid meta-heuristic approach, which combines a Coral Reefs Optimization algorithm (CRO) with a Variable Neighborhood Search (VNS) and a new representation for the problem, called Relaxed Flexible Bay Structure (RFBS), which simplifies the encoding and makes its fitness landscape more affordable. Thus, the use of VNS allows more intensive exploitation of the searching space with an affordable computational cost, as well as the RFBS allows better management of the free space into the plant layout. This combined strategy has been tested over a set of UA-FLP instances of different sizes, which have been previously tackled in the literature with alternative meta-heuristics. The tests results show very good performance in all cases

    A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem

    Get PDF
    This paper proposes a novel approach to address the Unequal Area Facility Layout Problem (UA-FLP), based on the combination of both an Island Model and a Coral Reefs Optimization (CRO) algorithm. Two different versions of this Island Model based on Coral Reefs Optimization Algorithm (IMCRO) are proposed and applied to the UA-FLP. The structure of flexible bays has been selected as effective encoding to represent the facility layouts within the algorithm. The two versions of the proposed approach have been tested in 22 UA-FLP cases, considering small, medium and large size categories. The empirical results obtained are compared with previous state of the art algorithms, in order to show the performance of the IMCRO. From this comparison, it can be extracted that both versions of the proposed IMCRO algorithm show an excellent performance, accurately solving the UA-FLP instances in all the size categories

    A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem

    Get PDF
    The Unequal Area Facility Layout Problem (UA-FLP) has been widely analyzed in the literature using several heuristics and meta-heuristics to optimize some qualitative criteria, taking into account different restrictions and constraints. Nevertheless, the subjective opinion of the designer (Decision Maker, DM) has never been considered along with the quantitative criteria and restrictions. This work proposes a novel approach for the UA-FLP based on an Interactive Coral Reefs Optimization (ICRO) algorithm, which combines the simultaneous consideration of both quantitative and qualitative (DM opinion) features. The algorithm implementation is explained in detail, including the way of jointly considering quantitative and qualitative aspects in the fitness function of the problem. The experimental part of the paper illustrates the effect of including qualitative aspects in UA-FLP problems, considering three different hard UA-FLP instances. Empirical results show that the proposed approach is able to incorporate the DM preferences in the obtained layouts, without affecting much to the quantitative part of the solutions
    • …
    corecore