1,132 research outputs found

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    A review of population-based metaheuristics for large-scale black-box global optimization: Part B

    Get PDF
    This paper is the second part of a two-part survey series on large-scale global optimization. The first part covered two major algorithmic approaches to large-scale optimization, namely decomposition methods and hybridization methods such as memetic algorithms and local search. In this part we focus on sampling and variation operators, approximation and surrogate modeling, initialization methods, and parallelization. We also cover a range of problem areas in relation to large-scale global optimization, such as multi-objective optimization, constraint handling, overlapping components, the component imbalance issue, and benchmarks, and applications. The paper also includes a discussion on pitfalls and challenges of current research and identifies several potential areas of future research

    A Multiobjective Evolutionary Conceptual Clustering Methodology for Gene Annotation Within Structural Databases: A Case of Study on the Gene Ontology Database

    Get PDF
    Current tools and techniques devoted to examine the content of large databases are often hampered by their inability to support searches based on criteria that are meaningful to their users. These shortcomings are particularly evident in data banks storing representations of structural data such as biological networks. Conceptual clustering techniques have demonstrated to be appropriate for uncovering relationships between features that characterize objects in structural data. However, typical con ceptual clustering approaches normally recover the most obvious relations, but fail to discover the lessfrequent but more informative underlying data associations. The combination of evolutionary algorithms with multiobjective and multimodal optimization techniques constitutes a suitable tool for solving this problem. We propose a novel conceptual clustering methodology termed evolutionary multiobjective conceptual clustering (EMO-CC), re lying on the NSGA-II multiobjective (MO) genetic algorithm. We apply this methodology to identify conceptual models in struc tural databases generated from gene ontologies. These models can explain and predict phenotypes in the immunoinflammatory response problem, similar to those provided by gene expression or other genetic markers. The analysis of these results reveals that our approach uncovers cohesive clusters, even those comprising a small number of observations explained by several features, which allows describing objects and their interactions from different perspectives and at different levels of detail.Ministerio de Ciencia y Tecnología TIC-2003-00877Ministerio de Ciencia y Tecnología BIO2004-0270EMinisterio de Ciencia y Tecnología TIN2006-1287

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Quantum-enhanced multiobjective large-scale optimization via parallelism

    Get PDF
    Traditional quantum-based evolutionary algorithms are intended to solve single-objective optimization problems or multiobjective small-scale optimization problems. However, multiobjective large-scale optimization problems are continuously emerging in the big-data era. Therefore, the research in this paper, which focuses on combining quantum mechanics with multiobjective large-scale optimization algorithms, will be beneficial to the study of quantum-based evolutionary algorithms. In traditional quantum-behaved particle swarm optimization (QPSO), particle position uncertainty prevents the algorithm from easily falling into a local optimum. Inspired by the uncertainty principle of position, the authors propose quantum-enhanced multiobjective large-scale algorithms, which are parallel multiobjective large-scale evolutionary algorithms (PMLEAs). Specifically, PMLEA-QDE, PMLEA-QjDE and PMLEA-QJADE are proposed by introducing the search mechanism of the individual particle from QPSO into differential evolution (DE), differential evolution with self-adapting control parameters (jDE) and adaptive differential evolution with optional external archive (JADE). Moreover, the proposed algorithms are implemented with parallelism to improve the optimization efficiency. Verifications performed on several test suites indicate that the proposed quantum-enhanced algorithms are superior to the state-of-the-art algorithms in terms of both effectiveness and efficiency

    A review of population-based metaheuristics for large-scale black-box global optimization: Part A

    Get PDF
    Scalability of optimization algorithms is a major challenge in coping with the ever growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird’s-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part of the series covers two major algorithmic approaches to large-scale global optimization: problem decomposition and memetic algorithms. Part of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally touches upon the pitfalls and challenges of current research and identifies several potential areas for future research

    Multi-Guide Particle Swarm Optimization for Large-Scale Multi-Objective Optimization Problems

    Get PDF
    Multi-guide particle swarm optimization (MGPSO) is a novel metaheuristic for multi-objective optimization based on particle swarm optimization (PSO). MGPSO has been shown to be competitive when compared with other state-of-the-art multi-objective optimization algorithms for low-dimensional problems. However, to the best of the author’s knowledge, the suitability of MGPSO for high-dimensional multi-objective optimization problems has not been studied. One goal of this thesis is to provide a scalability study of MGPSO in order to evaluate its efficacy for high-dimensional multi-objective optimization problems. It is observed that while MGPSO has comparable performance to state-of-the-art multi-objective optimization algorithms, it experiences a performance drop with the increase in the problem dimensionality. Therefore, a main contribution of this work is a new scalable MGPSO-based algorithm, termed cooperative co-evolutionary multi-guide particle swarm optimization (CCMGPSO), that incorporates ideas from cooperative PSOs. A detailed empirical study on well-known benchmark problems comparing the proposed improved approach with various state-of-the-art multi-objective optimization algorithms is done. Results show that the proposed CCMGPSO is highly competitive for high-dimensional problems

    Performance evaluation metrics for multi-objective evolutionary algorithms in search-based software engineering: Systematic literature review

    Get PDF
    Many recent studies have shown that various multi-objective evolutionary algorithms have been widely applied in the field of search-based software engineering (SBSE) for optimal solutions. Most of them either focused on solving newly re-formulated problems or on proposing new approaches, while a number of studies performed reviews and comparative studies on the performance of proposed algorithms. To evaluate such performance, it is necessary to consider a number of performance metrics that play important roles during the evaluation and comparison of investigated algorithms based on their best-simulated results. While there are hundreds of performance metrics in the literature that can quantify in performing such tasks, there is a lack of systematic review conducted to provide evidence of using these performance metrics, particularly in the software engineering problem domain. In this paper, we aimed to review and quantify the type of performance metrics, number of objectives, and applied areas in software engineering that reported in primary studies-this will eventually lead to inspiring the SBSE community to further explore such approaches in depth. To perform this task, a formal systematic review protocol was applied for planning, searching, and extracting the desired elements from the studies. After considering all the relevant inclusion and exclusion criteria for the searching process, 105 relevant articles were identified from the targeted online databases as scientific evidence to answer the eight research questions. The preliminary results show that remarkable studies were reported without considering performance metrics for the purpose of algorithm evaluation. Based on the 27 performance metrics that were identified, hypervolume, inverted generational distance, generational distance, and hypercube-based diversity metrics appear to be widely adopted in most of the studies in software requirements engineering, software design, software project management, software testing, and software verification. Additionally, there are increasing interest in the community in re-formulating many objective problems with more than three objectives, yet, currently are dominated in re-formulating two to three objectives

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore