2,546 research outputs found

    Soft computing for hazardous waste routing in Malaysia: a review

    Get PDF
    Nowadays, a significant number of researchers are focusing on utilizing soft computing approaches to address the issue of scheduling in applications concerned with hazardous waste management. In Malaysia, there is thoughtless awareness of the management of hazardous waste, even though the production of wastes in hazardous domains at the industrial and domestic levels has been rising lately. According to previous research findings, the location routing problem (LRP) can be designated as one of the models closer to the actual situation, evaluating the most suitable and optimal location for establishing facilities and utilizing transportation for pick-up and distribution. Recent studies have focused on enhancing the LRP model, and its methodologies approach to solve the waste management problem in hazardous domains. In this paper, a comprehensive review of the better promising and practicable mathematical model of LRP and its methodology approach is discussed, as well as an analysis of the publishing pattern and the trend of research over the preceding five years and more, as retrieved from the web of science (WoS) database. In conclusion, this research is significant in ensuring the effectiveness of reliable mathematical model development and suitable methodologies in the future for solving hazardous waste management problems

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    Facility Location Problems: Models, Techniques, and Applications in Waste Management

    Get PDF
    This paper presents a brief description of some existing models of facility location problems (FLPs) in solid waste management. The study provides salient information on commonly used distance functions in location models along with their corresponding mathematical formulation. Some of the optimization techniques that have been applied to location problems are also presented along with an appropriate pseudocode algorithm for their implementation. Concerning the models and solution techniques, the survey concludes by summarizing some recent studies on the applications of FLPs to waste collection and disposal. It is expected that this paper will contribute in no small measure to an integrated solid waste management system with specific emphasis on issues associated with waste collection, thereby boosting the drive for e�ective and e�cient waste collection systems. The content will also provide early career researchers with some necessary starting information required to formulate and solve problems relating to FLP

    An improved multi-objective programming with augmented ε-constraint method for hazardous waste location-routing problem

    Get PDF
    Source at https://doi.org/10.3390/ijerph13060548. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment

    Optimization of Location-Routing for the Waste Household Appliances Recycling Logistics under the Uncertain Condition

    Get PDF
    Waste household appliances and electronic products usually contain harmful substances which need scientific and reasonable collection, classification, processing, recovery and disposal to achieve sustainable and effective recycling and utilization. In recent years, due to the poor management of waste household appliances recycling logistics system, safety accidents occur frequently, which seriously harm the health and life safety of the society. This paper studies the risk management of recycling waste household appliances under uncertain conditions and establishes a risk measurement model under fuzzy population density. Considering the multi-stage and classification diversity of waste household appliances recycling logistics, the multi-objective location routing model and location - routing model are established respectively. Based on the model complexity analysis, the solution method of multi-objective model is designed. Finally, the validity of the model and algorithm is verified by examples and tests

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Sustainability Analysis under Disruption Risks

    Get PDF
    Resilience to disruptions and sustainability are both of paramount importance to supply chains. This paper presents a hybrid methodology for the design of a sustainable supply network that performs resiliently in the face of random disruptions. A stochastic bi-objective optimization model is developed that utilizes a fuzzy c-means clustering method to quantify and assess the sustainability performance of the suppliers. The proposed model determines outsourcing decisions and buttressing strategies that minimize the expected total cost and maximize the overall sustainability performance in disruptions. Important managerial insights and practical implications are obtained from the model implementation in a case study of plastic pipe industry

    Disruption Response Support For Inland Waterway Transportation

    Get PDF
    Motivated by the critical role of the inland waterways in the United States\u27 transportation system, this dissertation research focuses on pre- and post- disruption response support when the inland waterway navigation system is disrupted by a natural or manmade event. Following a comprehensive literature review, four research contributions are achieved. The first research contribution formulates and solves a cargo prioritization and terminal allocation problem (CPTAP) that minimizes total value loss of the disrupted barge cargoes on the inland waterway transportation system. It is tailored for maritime transportation stakeholders whose disaster response plans seek to mitigate negative economic and societal impacts. A genetic algorithm (GA)-based heuristic is developed and tested to solve realistically-sized instances of CPTAP. The second research contribution develops and examines a tabu search (TS) heuristic as an improved solution approach to CPTAP. Different from GA\u27s population search approach, the TS heuristic uses the local search to find improved solutions to CPTAP in less computation time. The third research contribution assesses cargo value decreasing rates (CVDRs) through a Value-focused Thinking based methodology. The CVDR is a vital parameter to the general cargo prioritization modeling as well as specifically for the CPTAP model for inland waterways developed here. The fourth research contribution develops a multi-attribute decision model based on the Analytic Hierarchy Process that integrates tangible and intangible factors in prioritizing cargo after an inland waterway disruption. This contribution allows for consideration of subjective, qualitative attributes in addition to the pure quantitative CPTAP approach explored in the first two research contributions

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper
    • …
    corecore