3,377 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Testing microelectronic biofluidic systems

    Get PDF
    According to the 2005 International Technology Roadmap for Semiconductors, the integration of emerging nondigital CMOS technologies will require radically different test methods, posing a major challenge for designers and test engineers. One such technology is microelectronic fluidic (MEF) arrays, which have rapidly gained importance in many biological, pharmaceutical, and industrial applications. The advantages of these systems, such as operation speed, use of very small amounts of liquid, on-board droplet detection, signal conditioning, and vast digital signal processing, make them very promising. However, testable design of these devices in a mass-production environment is still in its infancy, hampering their low-cost introduction to the market. This article describes analog and digital MEF design and testing method

    Dynamic State Estimation of Microgrid With Imperfect Data Communication

    Get PDF
    Dynamic state estimation of power systems is essential for wide area control purposes. In this thesis, we present the results of dynamic state estimation for a grid-connected microgrid including two synchronous generators and three loads. The Unscented Kalman filter (UKF) and the Extended Kalman filter (EKF) are implemented using a classical generator model connected to a Thevenin equivalent of the remainder of the microgrid. The model is used to estimate the six states variables of the generator; namely, rotor angle, speed variant, d- and q- axis transient voltages, d-axis damper flux, and q-axis second damper flux. Both real power and reactive power are used as measurements in our state estimation algorithm. The estimation results are compared with the true values to demonstrate the accuracy of the state estimator. In addition to data loss or delay, sensor measurements may include outliers that distort state estimation. We utilized the Generalized Maximum Likelihood-extended Kalman filter (GM-EKF), as a robust estimator, which exhibits good tracking capabilities suppressing the effects of bad data (outliers). We also used two methods of state estimation on UKF to deal with bad data. Simulation results obtained from the UKFs are compared with those of GM-EKF. We present simulation results at a high frequency of 1 kHz of state estimation for different scenarios that include normal operation, fault at Point of Common Coupling (PCC), loss of generator, and loss of load. We also developed a scheme to use delayed data in Kalman filter estimation and used it to simulate the effect of data loss and/or delay in the communication system of the microgrid. For the same scenarios, we also present simulation results at 50 Hz, which is compatible with Phasor Measurement Units (PMU), including bad data as well as data loss or delay. Our results demonstrate that while both filters successfully detect bad data, the UKF methods provide better estimates than those of the GM-EKF

    The MOCAST+ Study on a Quantum Gradiometry Satellite Mission with Atomic Clocks

    Get PDF
    In the past twenty years, satellite gravimetry missions have successfully provided data for the determination of the Earth static gravity field (GOCE) and its temporal variations (GRACE and GRACE-FO). In particular, the possibility to study the evolution in time of Earth masses allows us to monitor global parameters underlying climate changes, water resources, flooding, melting of ice masses and the corresponding global sea level rise, all of which are of paramount importance, providing basic data on, e.g. geodynamics, earthquakes, hydrology or ice sheets changes. Recently, a large interest has developed in novel technologies and quantum sensing, which promise higher sensitivity, drift-free measurements, and higher absolute accuracy for both terrestrial surveys and space missions, giving direct access to more precise long-term measurements. Looking at a time frame beyond the present decade, in the MOCAST+ study (MOnitoring mass variations by Cold Atom Sensors and Time measures) a satellite mission based on an “enhanced” quantum payload is proposed, with cold atom interferometers acting as gravity gradiometers, and atomic clocks for optical frequency measurements, providing observations of differences of the gravitational potential. The main outcomes are the definition of the accuracy level to be expected from this payload and the accuracy level needed to detect and monitor phenomena identified in the Scientific Challenges of the ESA Living Planet Program, in particular Cryosphere, Ocean and Solid Earth. In this paper, the proposed payload, mission profile and preliminary platform design are presented, with end-to-end simulation results and assessment of the impact on geophysical applications

    Review of recent research towards power cable life cycle management

    Get PDF
    Power cables are integral to modern urban power transmission and distribution systems. For power cable asset managers worldwide, a major challenge is how to manage effectively the expensive and vast network of cables, many of which are approaching, or have past, their design life. This study provides an in-depth review of recent research and development in cable failure analysis, condition monitoring and diagnosis, life assessment methods, fault location, and optimisation of maintenance and replacement strategies. These topics are essential to cable life cycle management (LCM), which aims to maximise the operational value of cable assets and is now being implemented in many power utility companies. The review expands on material presented at the 2015 JiCable conference and incorporates other recent publications. The review concludes that the full potential of cable condition monitoring, condition and life assessment has not fully realised. It is proposed that a combination of physics-based life modelling and statistical approaches, giving consideration to practical condition monitoring results and insulation response to in-service stress factors and short term stresses, such as water ingress, mechanical damage and imperfections left from manufacturing and installation processes, will be key to success in improved LCM of the vast amount of cable assets around the world

    Verification and Validation of Structural Health Monitoring Algorithms: A Maturation Procedure

    Get PDF
    Structural Health Monitoring (SHM) system offers new approaches to interrogate the integrity of structures. However, their reliability has still to be demonstrated an quantified to enable confidence transition from R&D to field implementation. In general, SHM algorithms performances are illustrated by topography study but it is not sufficient in a reliability assessment context. In the sense, that there is no quantification of the performance. To address this key issue, a dedicated maturation procedure is proposed in this paper. It is strongly inspired from the six sigma procedure for processes improvement to gradually improve SHM algorithms in order to reach the required maturity level. This paper presents the application of this procedure to a damage SHM localization algorithm as case study. To address this issue, finite element models and experimentation on the monitored structure have been used. It is concluded with a need of a new specific SHM algorithm intrinsic maturity scale. These maturity scales can be defined with respect to the functions of the considered SHM algorithm and the type of the used data

    Single-photon emitting diode in silicon carbide

    Full text link
    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >>300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6 figure

    A survey on adaptive random testing

    Get PDF
    Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications, including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to enhance RT's failure-detection ability by more evenly spreading the test cases over the input domain. Since its introduction in 2001, there have been many contributions to the development of ART, including various approaches, implementations, assessment and evaluation methods, and applications. This paper provides a comprehensive survey on ART, classifying techniques, summarizing application areas, and analyzing experimental evaluations. This paper also addresses some misconceptions about ART, and identifies open research challenges to be further investigated in the future work
    corecore