685 research outputs found

    Integrated, reliable and cloud-based personal health record: a scoping review.

    Get PDF
    Personal Health Records (PHR) emerge as an alternative to integrate patient’s health information to give a global view of patients' status. However, integration is not a trivial feature when dealing with a variety electronic health systems from healthcare centers. Access to PHR sensitive information must comply with privacy policies defined by the patient. Architecture PHR design should be in accordance to these, and take advantage of nowadays technology. Cloud computing is a current technology that provides scalability, ubiquity, and elasticity features. This paper presents a scoping review related to PHR systems that achieve three characteristics: integrated, reliable and cloud-based. We found 101 articles that addressed thosecharacteristics. We identified four main research topics: proposal/developed systems, PHR recommendations for development, system integration and standards, and security and privacy. Integration is tackled with HL7 CDA standard. Information reliability is based in ABE security-privacy mechanism. Cloud-based technology access is achieved via SOA.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    A systematic literature review of cloud computing in eHealth

    Full text link
    Cloud computing in eHealth is an emerging area for only few years. There needs to identify the state of the art and pinpoint challenges and possible directions for researchers and applications developers. Based on this need, we have conducted a systematic review of cloud computing in eHealth. We searched ACM Digital Library, IEEE Xplore, Inspec, ISI Web of Science and Springer as well as relevant open-access journals for relevant articles. A total of 237 studies were first searched, of which 44 papers met the Include Criteria. The studies identified three types of studied areas about cloud computing in eHealth, namely (1) cloud-based eHealth framework design (n=13); (2) applications of cloud computing (n=17); and (3) security or privacy control mechanisms of healthcare data in the cloud (n=14). Most of the studies in the review were about designs and concept-proof. Only very few studies have evaluated their research in the real world, which may indicate that the application of cloud computing in eHealth is still very immature. However, our presented review could pinpoint that a hybrid cloud platform with mixed access control and security protection mechanisms will be a main research area for developing citizen centred home-based healthcare applications

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Privacy-Preserving Personal Health Record System Using Attribute-Based Encryption

    Get PDF
    Personal health record (PHR) service is an emerging model for health information exchange. It allows patients to create, manage, control and share their health information with other users as well as healthcare providers. In reality, a PHR service is likely to be hosted by third-party cloud service providers in order to enhance its interoperability. However, there have been serious privacy concerns about outsourcing PHR data to cloud servers, not only because cloud providers are generally not covered entities under HIPAA, but also due to an increasing number of cloud data breach incidents happened in recent years. In this thesis, we propose a privacy-preserving PHR system using attribute-based encryption (ABE). In this system, patients can encrypt their PHRs and store them on semi-trusted cloud servers such that servers do not have access to sensitive PHR contexts. Meanwhile patients maintain full control over access to their PHR files, by assigning fine-grained, attribute-based access privileges to selected data users, while different users can have access to different parts of their PHR. Our system also provides extra features such as populating PHR from professional electronic health record (EHR) using ABE. In order to evaluate our proposal, we create a Linux library that implement primitive of key-policy attribute-based encryption (KP-ABE) algorithms. We also build a PHR application based on Indivo PCHR system that allow doctors to encrypt and submit their prescription and diagnostic note to PHR servers using KP-ABE. We evaluate the performance efficiency of different ABE schemes as well as the data query time of Indivo PCHR system when PHR data are encrypted under ABE scheme

    Secure spontaneous emergency access to personal health record

    Get PDF
    We propose a system which enables access to the user's Personal Health Record (PHR) in the event of emergency. The access typically occurs in an ad-hoc and spontaneous manner and the user is usually unconscious, hence rendering the unavailability of the user's password to access the PHR. The proposed system includes a smart card carried by the user at all time and it is personalized with a pseudo secret, an URL to the PHR Server, a secret key shared with the PHR Server and a number of redemption tokens generated using a hash chain. In each emergency session, a one-time use redemption token is issued by the smart card, allowing the emergency doctor to retrieve the user's PHR upon successful authentication of his credentials and validation of the redemption token. The server returns the PHR encrypted with a one-time session key which can only be decrypted by the emergency doctor. The devised interaction protocol to facilitate emergency access to the user's PHR is secure and efficient

    A hybrid model for managing personal health records in South Africa

    Get PDF
    Doctors can experience difficulty in accessing medical information of new patients. One reason for this is that the management of medical records is mostly institution-centred. The lack of access to medical information may negatively affect patients in several ways. These include new medical tests that may need to be carried out at a cost to the patient and doctors prescribing drugs to which the patient is allergic. This research investigates how patients can play an active role in sharing their personal health records (PHRs) with doctors located in geographically separate areas. In order to achieve the goal of this research, existing literature concerning medical health records and standards was reviewed. A literature review of techniques that can be used to ensure privacy of health information was also undertaken. Interview studies were carried out with three medical practices in Port Elizabeth with the aim of contextualising the findings from the literature study. The Design Science Research methodology was used for this research. A Hybrid Model for Managing Personal Health Records in South Africa is proposed. This model allows patients to view their PHRs on their mobile phones and medical practitioners to manage the patients’ PHRs using a web-based application. The patients’ PHR information is stored both on a cloud server and on mobile devices hence the hybrid nature. Two prototypes were developed as a proof of concept; a mobile application for the patients and a web-based application for the medical practitioners. A field study was carried out with the NMMU health services department and 12 participants over a period of two weeks. The results of the field study were highly positive. The successful evaluation of the prototypes provides empirical evidence that the proposed model brings us closer to the realisation of ubiquitous access to PHRS in South Africa

    Reliable and timely event notification for publish/subscribe services over the internet

    Get PDF
    The publish/subscribe paradigm is gaining attention for the development of several applications in wide area networks (WANs) due to its intrinsic time, space, and synchronization decoupling properties that meet the scalability and asynchrony requirements of those applications. However, while the communication in a WAN may be affected by the unpredictable behavior of the network, with messages that can be dropped or delayed, existing publish/subscribe solutions pay just a little attention to addressing these issues. On the contrary, applications such as business intelligence, critical infrastructures, and financial services require delivery guarantees with strict temporal deadlines. In this paper, we propose a framework that enforces both reliability and timeliness for publish/subscribe services over WAN. Specifically, we combine two different approaches: gossiping, to retrieve missing packets in case of incomplete information, and network coding, to reduce the number of retransmissions and, consequently, the latency. We provide an analytical model that describes the information recovery capabilities of our algorithm and a simulation-based study, taking into account a real workload from the Air Traffic Control domain, which evidences how the proposed solution is able to ensure reliable event notification over a WAN within a reasonable bounded time window. © 2013 IEEE

    Health Infomatics Using Multy-Keyword Rank Search Over Cloud

    Get PDF
    This projects targets on the productivity of the cloud computing technology in health care industry. Health care sector is one of the largest sectors in the world. Health care industry depends mainly on Information Technology to provide best service and accuracy of information to their patients. System deals with the cloud technology to create network between patients, doctors and health care institution by providing applications services and also by keeping the data in the cloud. System define and solve the challenging problem of privacy preserving multi-keyword search over encrypted cloud data by providing searching through index. Through analysis investigating privacy and efficiency guarantee of proposed schemes is given, and experiments on the real world’s data set further show proposed schemes indeed introduce low overhead on computation and communication. DOI: 10.17762/ijritcc2321-8169.15011

    Cloud Computing in Healthcare – a Literature Review on Current State of Research

    Get PDF
    Nowadays, IT resources are increasingly being used in all areas of the health sector. Cloud computing offers a promising approach to satisfy the IT needs in a favorable way. Despite numerous publications in the context of cloud computing in healthcare, there is no systematic review on current research so far. This paper addresses the gap and is aimed to identify the state of research and determine the potential areas of future research in the domain. We conduct a structured literature search based on an established framework. Through clustering of the research goals of the found papers we derive research topics including developing cloud-based applications, platforms or brokers, security and privacy mechanisms, and benefit assessments for the use of cloud computing in healthcare. We hence analyze current research results across the topics and deduce areas for future research, e.g., development, validation and improvement of proposed solutions, an evaluation framework
    corecore