15,564 research outputs found

    Applying automated deduction to natural language understanding

    Get PDF
    AbstractVery few natural language understanding applications employ methods from automated deduction. This is mainly because (i) a high level of interdisciplinary knowledge is required, (ii) there is a huge gap between formal semantic theory and practical implementation, and (iii) statistical rather than symbolic approaches dominate the current trends in natural language processing. Moreover, abduction rather than deduction is generally viewed as a promising way to apply reasoning in natural language understanding. We describe three applications where we show how first-order theorem proving and finite model construction can efficiently be employed in language understanding.The first is a text understanding system building semantic representations of texts, developed in the late 1990s. Theorem provers are here used to signal inconsistent interpretations and to check whether new contributions to the discourse are informative or not. This application shows that it is feasible to use general-purpose theorem provers for first-order logic, and that it pays off to use a battery of different inference engines as in practice they complement each other in terms of performance.The second application is a spoken-dialogue interface to a mobile robot and an automated home. We use the first-order theorem prover spass for checking inconsistencies and newness of information, but the inference tasks are complemented with the finite model builder mace used in parallel to the prover. The model builder is used to check for satisfiability of the input; in addition, the produced finite and minimal models are used to determine the actions that the robot or automated house has to execute. When the semantic representation of the dialogue as well as the number of objects in the context are kept fairly small, response times are acceptable to human users.The third demonstration of successful use of first-order inference engines comes from the task of recognising entailment between two (short) texts. We run a robust parser producing semantic representations for both texts, and use the theorem prover vampire to check whether one text entails the other. For many examples it is hard to compute the appropriate background knowledge in order to produce a proof, and the model builders mace and paradox are used to estimate the likelihood of an entailment

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Planning and Proof Planning

    Get PDF
    . The paper adresses proof planning as a specific AI planning. It describes some peculiarities of proof planning and discusses some possible cross-fertilization of planning and proof planning. 1 Introduction Planning is an established area of Artificial Intelligence (AI) whereas proof planning introduced by Bundy in [2] still lives in its childhood. This means that the development of proof planning needs maturing impulses and the natural questions arise What can proof planning learn from its Big Brother planning?' and What are the specific characteristics of the proof planning domain that determine the answer?'. In turn for planning, the analysis of approaches points to a need of mature techniques for practical planning. Drummond [8], e.g., analyzed approaches with the conclusion that the success of Nonlin, SIPE, and O-Plan in practical planning can be attributed to hierarchical action expansion, the explicit representation of a plan's causal structure, and a very simple form of propo..

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure
    corecore