11 research outputs found

    An integrated product and process information modelling system for on-site construction

    Get PDF
    The inadequate infrastructure that exists for seamless project team communications has its roots in the problems arising from fragmentation, and the lack of effective co-ordination between stages of the construction process. The use of disparate computer-aided engineering (CAE) systems by most disciplines is one of the enduring legacies of this problem and makes information exchange between construction team members difficult and, in some cases, impossible. The importance of integrating modelling techniques with a view to creating an integrated product and process model that is applicable to all stages of a construction project's life cycle, is being recognised by the Construction Industry. However, improved methods are still needed to assist the developer in the definition of information model structures, and current modelling methods and standards are only able to provide limited assistance at various stages of the information modelling process. This research investigates the role of system integration by reviewing product and process information models, current modelling practices and modelling standards in the construction industry, and draws conclusions with similar practices from other industries, both in terms of product and process representation, and model content. It further reviews various application development tools and information system requirements to support a suitable integrated information structure, for developing an integrated product and process model for design and construction, based on concurrent engineering principles. The functional and information perspectives of the integrated model, which were represented using IDEFO and the unified modelling language (UML), provided the basis for developing a prototype hyper-integrated product and process information modelling system (HIPPY). Details of the integrated conceptual model's implementation, practical application of the prototype system, using house-building as an example, and evaluation by industry practitioners are also presented. It is concluded that the effective integration of product and process information models is a key component of the implementation of concurrent engineering in construction, and is a vital step towards providing richer information representation, better efficiency, and the flexibility to support life cycle information management during the construction stage of small to medium sized-building projects

    A framework for the analysis and evaluation of enterprise models

    Get PDF
    Bibliography: leaves 264-288.The purpose of this study is the development and validation of a comprehensive framework for the analysis and evaluation of enterprise models. The study starts with an extensive literature review of modelling concepts and an overview of the various reference disciplines concerned with enterprise modelling. This overview is more extensive than usual in order to accommodate readers from different backgrounds. The proposed framework is based on the distinction between the syntactic, semantic and pragmatic model aspects and populated with evaluation criteria drawn from an extensive literature survey. In order to operationalize and empirically validate the framework, an exhaustive survey of enterprise models was conducted. From this survey, an XML database of more than twenty relatively large, publicly available enterprise models was constructed. A strong emphasis was placed on the interdisciplinary nature of this database and models were drawn from ontology research, linguistics, analysis patterns as well as the traditional fields of data modelling, data warehousing and enterprise systems. The resultant database forms the test bed for the detailed framework-based analysis and its public availability should constitute a useful contribution to the modelling research community. The bulk of the research is dedicated to implementing and validating specific analysis techniques to quantify the various model evaluation criteria of the framework. The aim for each of the analysis techniques is that it can, where possible, be automated and generalised to other modelling domains. The syntactic measures and analysis techniques originate largely from the disciplines of systems engineering, graph theory and computer science. Various metrics to measure model hierarchy, architecture and complexity are tested and discussed. It is found that many are not particularly useful or valid for enterprise models. Hence some new measures are proposed to assist with model visualization and an original "model signature" consisting of three key metrics is proposed.Perhaps the most significant contribution ofthe research lies in the development and validation of a significant number of semantic analysis techniques, drawing heavily on current developments in lexicography, linguistics and ontology research. Some novel and interesting techniques are proposed to measure, inter alia, domain coverage, model genericity, quality of documentation, perspicuity and model similarity. Especially model similarity is explored in depth by means of various similarity and clustering algorithms as well as ways to visualize the similarity between models. Finally, a number of pragmatic analyses techniques are applied to the models. These include face validity, degree of use, authority of model author, availability, cost, flexibility, adaptability, model currency, maturity and degree of support. This analysis relies mostly on the searching for and ranking of certain specific information details, often involving a degree of subjective interpretation, although more specific quantitative procedures are suggested for some of the criteria. To aid future researchers, a separate chapter lists some promising analysis techniques that were investigated but found to be problematic from methodological perspective. More interestingly, this chapter also presents a very strong conceptual case on how the proposed framework and the analysis techniques associated vrith its various criteria can be applied to many other information systems research areas. The case is presented on the grounds of the underlying isomorphism between the various research areas and illustrated by suggesting the application of the framework to evaluate web sites, algorithms, software applications, programming languages, system development methodologies and user interfaces

    On the Utilisation of Persistent Programming Environments

    Get PDF
    There is a growing gap between the supply and demand of good quality software, which is primarily due to the difficulty of the programming task and the poor level of support for programmers. Programming is carried out using software tools which do not match very well either real world understanding of a problem or even the other tools which need to be used. In every phase of software production, the programmer must master new tools which function in a different way from each other. The Persistent Programming Paradigm attempts to reduce these problems by providing a programming environment which gives consistent methods of accessing program values of various kinds. Long-term and short-term data are treated in the same way. Numbers, text, graphical values and even program objects are all referred to in the same consistent way. Languages which support persistence provide considerable power within a simple environment, so that programmers can perform most if not all parts of the programming task in a coherent and uniform manner. This thesis tests the hypothesis that programmers do in fact derive some benefit from this - the simplification of the program and faster implementation of complex programs. The persistent language PS-algol is introduced and used to build: user-interface and compiler tools; a database application; some data modelling tools, both relational and semantic; a rapid prototyping system; an object-oriented language; and software support systems. In doing so, the thesis demonstrates the breadth of work which can be achieved using a Persistent Programming Language, and the ease with which these various projects can be implemented. Further, the thesis derives the beginnings of a methodology for using such a language and analyses how PS-algol could be improved. In doing so, the work aims to put the Persistent Programming Paradigm on a firm basis following significant use and experimentation

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation

    Studies related to the process of program development

    Get PDF
    The submitted work consists of a collection of publications arising from research carried out at Rhodes University (1970-1980) and at Heriot-Watt University (1980-1992). The theme of this research is the process of program development, i.e. the process of creating a computer program to solve some particular problem. The papers presented cover a number of different topics which relate to this process, viz. (a) Programming methodology programming. (b) Properties of programming languages. aspects of structured. (c) Formal specification of programming languages. (d) Compiler techniques. (e) Declarative programming languages. (f) Program development aids. (g) Automatic program generation. (h) Databases. (i) Algorithms and applications
    corecore