2,356 research outputs found

    Data mining and fusion

    No full text

    A rule-based semantic approach for data integration, standardization and dimensionality reduction utilizing the UMLS: Application to predicting bariatric surgery outcomes

    Get PDF
    Utilization of existing clinical data for improving patient outcomes poses a number of challenging and complex problems involving lack of data integration, the absence of standardization across inhomogeneous data sources and computationally-demanding and time-consuming exploration of very large datasets. In this paper, we will present a robust semantic data integration, standardization and dimensionality reduction method to tackle and solve these problems. Our approach enables the integration of clinical data from diverse sources by resolving canonical inconsistencies and semantic heterogeneity as required by the National Library of Medicine's Unified Medical Language System (UMLS) to produce standardized medical data. Through a combined application of rule-based semantic networks and machine learning, our approach enables a large reduction in dimensionality of the data and thus allows for fast and efficient application of data mining techniques to large clinical datasets. An example application of the techniques developed in our study is presented for the prediction of bariatric surgery outcomes

    Tree mining application to matching of hetereogeneous knowledge

    Get PDF
    Matching of heterogeneous knowledge sources is of increasing importance in areas such as scientific knowledge management, e-commerce, enterprise application integration, and many emerging Semantic Web applications. With the desire of knowledge sharing and reuse in these fields, it is common that the knowledge coming from different organizations from the same domain is to be matched. We propose a knowledge matching method based on our previously developed tree mining algorithms for extracting frequently occurring subtrees from a tree structured database such as XML. Using the method the common structure among the different representations can be automatically extracted. Our focus is on knowledge matching at the structural level and we use a set of example XML schema documents from the same domain to evaluate the method. We discuss some important issues that arise when applying tree mining algorithms for detection of common document structures. The experiments demonstrate the usefulness of the approach

    Knowledge discOvery And daTa minINg inteGrated (KOATING) Moderators for collaborative projects

    Get PDF
    A major issue in any multidiscipline collaborative project is how to best share and simultaneously exploit different types of expertise, without duplicating efforts or inadvertently causing conflicts or loss of efficiency through misunderstanding of individual or shared goals. Moderators are knowledge based systems designed to support collaborative teams by raising awareness of potential problems or conflicts. However, the functioning of a Moderator is limited by the knowledge it has about the team members. Knowledge acquisition, learning and updating of knowledge are the major challenges for a Moderator's implementation. To address these challenges a Knowledge discOvery And daTa minINg inteGrated (KOATING) framework is presented for Moderators to enable them to continuously learn from the operational databases of the company and semi-automatically update their knowledge about team members. This enables the reuse of discovered knowledge from operational databases within collaborative projects. The integration of knowledge discovery in database (KDD) techniques into the existing Knowledge Acquisition Module of a moderator enables hidden data dependencies and relationships to be utilised to facilitate the moderation process. The architecture for the Universal Knowledge Moderator (UKM) shows how Moderators can be extended to incorporate a learning element which enables them to provide better support for virtual enterprises. Unified Modelling Language diagrams were used to specify the ways to design and develop the proposed system. The functioning of a UKM is presented using an illustrative example

    Data Warehouse Technology and Application in Data Centre Design for E-government

    Get PDF

    Integrating Blockchain and Fog Computing Technologies for Efficient Privacy-preserving Systems

    Get PDF
    This PhD dissertation concludes a three-year long research journey on the integration of Fog Computing and Blockchain technologies. The main aim of such integration is to address the challenges of each of these technologies, by integrating it with the other. Blockchain technology (BC) is a distributed ledger technology in the form of a distributed transactional database, secured by cryptography, and governed by a consensus mechanism. It was initially proposed for decentralized cryptocurrency applications with practically proven high robustness. Fog Computing (FC) is a geographically distributed computing architecture, in which various heterogeneous devices at the edge of network are ubiquitously connected to collaboratively provide elastic computation services. FC provides enhanced services closer to end-users in terms of time, energy, and network load. The integration of FC with BC can result in more efficient services, in terms of latency and privacy, mostly required by Internet of Things systems

    Data mining by means of generalized patterns

    Get PDF
    The thesis is mainly focused on the study and the application of pattern discovery algorithms that aggregate database knowledge to discover and exploit valuable correlations, hidden in the analyzed data, at different abstraction levels. The aim of the research effort described in this work is two-fold: the discovery of associations, in the form of generalized patterns, from large data collections and the inference of semantic models, i.e., taxonomies and ontologies, suitable for driving the mining proces
    • …
    corecore