264 research outputs found

    parMERASA Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability

    Get PDF
    International audienceEngineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Timing in Technischen Sicherheitsanforderungen für Systementwürfe mit heterogenen Kritikalitätsanforderungen

    Get PDF
    Traditionally, timing requirements as (technical) safety requirements have been avoided through clever functional designs. New vehicle automation concepts and other applications, however, make this harder or even impossible and challenge design automation for cyber-physical systems to provide a solution. This thesis takes upon this challenge by introducing cross-layer dependency analysis to relate timing dependencies in the bounded execution time (BET) model to the functional model of the artifact. In doing so, the analysis is able to reveal where timing dependencies may violate freedom from interference requirements on the functional layer and other intermediate model layers. For design automation this leaves the challenge how such dependencies are avoided or at least be bounded such that the design is feasible: The results are synthesis strategies for implementation requirements and a system-level placement strategy for run-time measures to avoid potentially catastrophic consequences of timing dependencies which are not eliminated from the design. Their applicability is shown in experiments and case studies. However, all the proposed run-time measures as well as very strict implementation requirements become ever more expensive in terms of design effort for contemporary embedded systems, due to the system's complexity. Hence, the second part of this thesis reflects on the design aspect rather than the analysis aspect of embedded systems and proposes a timing predictable design paradigm based on System-Level Logical Execution Time (SL-LET). Leveraging a timing-design model in SL-LET the proposed methods from the first part can now be applied to improve the quality of a design -- timing error handling can now be separated from the run-time methods and from the implementation requirements intended to guarantee them. The thesis therefore introduces timing diversity as a timing-predictable execution theme that handles timing errors without having to deal with them in the implemented application. An automotive 3D-perception case study demonstrates the applicability of timing diversity to ensure predictable end-to-end timing while masking certain types of timing errors.Traditionell wurden Timing-Anforderungen als (technische) Sicherheitsanforderungen durch geschickte funktionale Entwürfe vermieden. Neue Fahrzeugautomatisierungskonzepte und Anwendungen machen dies jedoch schwieriger oder gar unmöglich; Aufgrund der Problemkomplexität erfordert dies eine Entwurfsautomatisierung für cyber-physische Systeme heraus. Diese Arbeit nimmt sich dieser Herausforderung an, indem sie eine schichtenübergreifende Abhängigkeitsanalyse einführt, um zeitliche Abhängigkeiten im Modell der beschränkten Ausführungszeit (BET) mit dem funktionalen Modell des Artefakts in Beziehung zu setzen. Auf diese Weise ist die Analyse in der Lage, aufzuzeigen, wo Timing-Abhängigkeiten die Anforderungen an die Störungsfreiheit auf der funktionalen Schicht und anderen dazwischenliegenden Modellschichten verletzen können. Für die Entwurfsautomatisierung ergibt sich daraus die Herausforderung, wie solche Abhängigkeiten vermieden oder zumindest so eingegrenzt werden können, dass der Entwurf machbar ist: Das Ergebnis sind Synthesestrategien für Implementierungsanforderungen und eine Platzierungsstrategie auf Systemebene für Laufzeitmaßnahmen zur Vermeidung potentiell katastrophaler Folgen von Timing-Abhängigkeiten, die nicht aus dem Entwurf eliminiert werden. Ihre Anwendbarkeit wird in Experimenten und Fallstudien gezeigt. Allerdings werden alle vorgeschlagenen Laufzeitmaßnahmen sowie sehr strenge Implementierungsanforderungen für moderne eingebettete Systeme aufgrund der Komplexität des Systems immer teurer im Entwurfsaufwand. Daher befasst sich der zweite Teil dieser Arbeit eher mit dem Entwurfsaspekt als mit dem Analyseaspekt von eingebetteten Systemen und schlägt ein Entwurfsparadigma für vorhersagbares Timing vor, das auf der System-Level Logical Execution Time (SL-LET) basiert. Basierend auf einem Timing-Entwurfsmodell in SL-LET können die vorgeschlagenen Methoden aus dem ersten Teil nun angewandt werden, um die Qualität eines Entwurfs zu verbessern -- die Behandlung von Timing-Fehlern kann nun von den Laufzeitmethoden und von den Implementierungsanforderungen, die diese garantieren sollen, getrennt werden. In dieser Arbeit wird daher Timing Diversity als ein Thema der Timing-Vorhersage in der Ausführung eingeführt, das Timing-Fehler behandelt, ohne dass sie in der implementierten Anwendung behandelt werden müssen. Anhand einer Fallstudie aus dem Automobilbereich (3D-Umfeldwahrnehmung) wird die Anwendbarkeit von Timing-Diversität demonstriert, um ein vorhersagbares Ende-zu-Ende-Timing zu gewährleisten und gleichzeitig in der Lage zu sein, bestimmte Arten von Timing-Fehlern zu maskieren

    On the limits of probabilistic timing analysis

    Get PDF
    Over the last years, we are witnessing the steady and rapid growth of Critica! Real-Time Embedded Systems (CRTES) industries, such as automotive and aerospace. Many of the increasingly-complex CRTES' functionalities that are currently implemented with mechanical means are moving towards to an electromechanical implementation controlled by critica! software. This trend results in a two-fold consequence. First, the size and complexity of critical-software increases in every new embedded product. And second, high-performance hardware features like caches are more frequently used in real-time processors. The increase in complexity of CRTES challenges the validation and verification process, a necessary step to certify that the system is safe for deployment. Timing validation and verification includes the computation of the Worst-Case Execution Time (WCET) estimates, which need to be trustworthy and tight. Traditional timing analysis are challenged by the use of complex hardware/software, resulting in low-quality WCET estimates, which tend to add significant pessimism to guarantee estimates' trustworthiness. This calls for new solutions that help tightening WCET estimates in a safe manner. In this Thesis, we investigate the novel Measurement-Based Probabilistic Timing Analysis (MBPTA), which in its original version already shows potential to deliver trustworthy and tight WCETs for tasks running on complex systems. First, we propose a methodology to assess and ensure that ali cache memory layouts, which can significantly impact WCET, have been adequately factored in the WCET estimation process. Second, we provide a solution to achieve simultaneously cache representativeness and full path coverage. This solution provides evidence proving that WCET estimates obtained are valid for ali program execution paths regardless of how code and data are laid out in the cache. Lastly, we analyse and expose the main misconceptions and pitfalls that can prevent a sound application of WCET analysis based on extreme value theory, which is used as part of MBPTA.En los últimos años, se ha podido observar un crecimiento rápido y sostenido de la industria de los sistemas embebidos críticos de tiempo real (abreviado en inglés CRTES}, como por ejemplo la industria aeronáutica o la automovilística. En un futuro cercano, muchas de las funcionalidades complejas que actualmente se están implementando a través de sistemas mecánicos en los CRTES pasarán a ser controladas por software crítico. Esta tendencia tiene dos consecuencias claras. La primera, el tamaño y la complejidad del software se incrementará en cada nuevo producto embebido que se lance al mercado. La segunda, las técnicas hardware destinadas a alto rendimiento (por ejemplo, memorias caché) serán usadas más frecuentemente en los procesadores de tiempo real. El incremento en la complejidad de los CRTES impone un reto en los procesos de validación y verificación de los procesadores, un paso imprescindible para certificar que los sistemas se pueden comercializar de forma segura. La validación y verificación del tiempo de ejecución incluye la estimación del tiempo de ejecución en el peor caso (abreviado en inglés WCET}, que debe ser precisa y certera. Desafortunadamente, los procesos tradicionales para analizar el tiempo de ejecución tienen problemas para analizar las complejas combinaciones entre el software y el hardware, produciendo estimaciones del WCET de mala calidad y conservadoras. Para superar dicha limitación, es necesario que florezcan nuevas técnicas que ayuden a proporcionar WCET más precisos de forma segura y automatizada. En esta Tesis se profundiza en la investigación referente al análisis probabilístico de tiempo de ejecución basado en medidas (abreviado en inglés MBPTA), cuyas primeras implementaciones muestran potencial para obtener un WCET preciso y certero en tareas ejecutadas en sistemas complejos. Primero, se propone una metodología para certificar que todas las distribuciones de la memoria caché, una de las estructuras más complejas de los CRTES, han sido contabilizadas adecuadamente durante el proceso de estimación del WCET. Segundo, se expone una solución para conseguir a la vez representatividad en la memoria caché y cobertura total en caminos críticos del programa. Dicha solución garantiza que la estimación WCET obtenida es válida para todos los caminos de ejecución, independientemente de como el código y los datos se guardan en la memoria caché. Finalmente, se analizan y discuten los mayores malentendidos y obstáculos que pueden prevenir la aplicabilidad del análisis de WCET basado en la teoría de valores extremos, la cual forma parte del MBPTA.Postprint (published version

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Integration and validation of embedded flight software on space-qualified multicore architectures

    Get PDF
    In the recent decades, the importance of software on space missions has notably increased, reflecting the need to integrate advanced on-board functionalities. With multicore processors being lately introduced to host critical high-performance applications, the complexity to validate software has significantly raised with respect to single core architectures. While there has been a big step forward in avionics after the publication of the CAST-32A paper, the ECSS-E-ST-40C software engineering standard used by the European Space Agency (ESA) is still not providing validation support for multicore processors. Hence, it is expected that standardising guidelines to develop software on such platforms will become a recurring topic in the industry to match the demands of future space exploration missions
    corecore