28,246 research outputs found

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Using Distributed Agents to Create University Course Timetables Addressing Essential & Desirable Constraints and Fair Allocation of Resources

    Get PDF
    In this study, the University Course Timetabling Problem (UCTP) has been investigated. This is a form of Constraint Satisfaction Problem (CSP) and belongs to the NP-complete class. The nature of a such problem is highly descriptive, a solution therefore involves combining many aspects of the problem. Although various timetabling algorithms have been continuously developed for nearly half a century, a gap still exists between the theoretical and practical aspects of university timetabling. This research is aimed to narrow the gap. We created an agent-based model for solving the university course timetabling problem, where this model not only considers a set of essential constraints upon the teaching activities, but also a set of desirable constraints that correspond to real-world needs. The model also seeks to provide fair allocation of resources. The capabilities of agents are harnessed for the activities of decision making, collaboration, coordination and negotiation by embedding them within the protocol designs. The resulting set of university course timetables involve the participation of every element in the system, with each agent taking responsibility for organising of its own course timetable, cooperating together to resolve problems. There are two types of agents in the model; these are Year-Programme Agent and Rooms Agent. In this study, we have used four different principles for organising the interaction between the agents: First-In-First-Out & Sequential (FIFOSeq), First-In-First-Out & Interleaved (FIFOInt), Round-Robin & Sequential (RRSeq) and Round-Robin & Interleaved (RRInt). The problem formulation and data instances of the third track of the Second International Timetabling Competition (ITC-2007) have been used as benchmarks for validating these implemented timetables. The validated results not only compare the four principles with each other; but also compare them with other timetabling techniques used for ITC-2007. The four different principles were able to successfully schedule all lectures in different periods, with no instances of two lectures occupying the same room at the same time. The lectures belonging to the same curriculum or taught by the same teacher do not conflict. Every lecture has been assigned a teacher before scheduling. The capacity of every assigned room is greater than, or equal to, the number of students in that course. The lectures of each course have been spread across the minimum number of working days with more than 98 percent success, and for more than 75 percent of the lectures under the same curriculum, it has been possible to avoid isolated deliveries. We conclude that the RRInt principle gives the most consistent likelihood of ensuring that each YPA in the system gets the best and fairest chance to obtain its resources

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner
    • 

    corecore