60,096 research outputs found

    Autonomous clustering using rough set theory

    Get PDF
    This paper proposes a clustering technique that minimises the need for subjective human intervention and is based on elements of rough set theory. The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency

    Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment

    Get PDF
    Sustainability assessments require the management of a wide variety of information types, parameters and uncertainties. Multi criteria decision analysis (MCDA) has been regarded as a suitable set of methods to perform sustainability evaluations as a result of its flexibility and the possibility of facilitating the dialogue between stakeholders, analysts and scientists. However, it has been reported that researchers do not usually properly define the reasons for choosing a certain MCDA method instead of another. Familiarity and affinity with a certain approach seem to be the drivers for the choice of a certain procedure. This review paper presents the performance of five MCDA methods (i.e. MAUT, AHP, PROMETHEE, ELECTRE and DRSA) in respect to ten crucial criteria that sustainability assessments tools should satisfy, among which are a life cycle perspective, thresholds and uncertainty management, software support and ease of use. The review shows that MAUT and AHP are fairly simple to understand and have good software support, but they are cognitively demanding for the decision makers, and can only embrace a weak sustainability perspective as trade-offs are the norm. Mixed information and uncertainty can be managed by all the methods, while robust results can only be obtained with MAUT. ELECTRE, PROMETHEE and DRSA are non-compensatory approaches which consent to use a strong sustainability concept, accept a variety of thresholds, but suffer from rank reversal. DRSA is less demanding in terms of preference elicitation, is very easy to understand and provides a straightforward set of decision rules expressed in the form of elementary “if 
 then 
” conditions. Dedicated software is available for all the approaches with a medium to wide range of results capability representation. DRSA emerges as the easiest method, followed by AHP, PROMETHEE and MAUT, while ELECTRE is regarded as fairly difficult. Overall, the analysis has shown that most of the requirements are satisfied by the MCDA methods (although to different extents) with the exclusion of management of mixed data types and adoption of life cycle perspective which are covered by all the considered approaches

    Multiple Relevant Feature Ensemble Selection Based on Multilayer Co-Evolutionary Consensus MapReduce

    Full text link
    IEEE Although feature selection for large data has been intensively investigated in data mining, machine learning, and pattern recognition, the challenges are not just to invent new algorithms to handle noisy and uncertain large data in applications, but rather to link the multiple relevant feature sources, structured, or unstructured, to develop an effective feature reduction method. In this paper, we propose a multiple relevant feature ensemble selection (MRFES) algorithm based on multilayer co-evolutionary consensus MapReduce (MCCM). We construct an effective MCCM model to handle feature ensemble selection of large-scale datasets with multiple relevant feature sources, and explore the unified consistency aggregation between the local solutions and global dominance solutions achieved by the co-evolutionary memeplexes, which participate in the cooperative feature ensemble selection process. This model attempts to reach a mutual decision agreement among co-evolutionary memeplexes, which calls for the need for mechanisms to detect some noncooperative co-evolutionary behaviors and achieve better Nash equilibrium resolutions. Extensive experimental comparative studies substantiate the effectiveness of MRFES to solve large-scale dataset problems with the complex noise and multiple relevant feature sources on some well-known benchmark datasets. The algorithm can greatly facilitate the selection of relevant feature subsets coming from the original feature space with better accuracy, efficiency, and interpretability. Moreover, we apply MRFES to human cerebral cortex-based classification prediction. Such successful applications are expected to significantly scale up classification prediction for large-scale and complex brain data in terms of efficiency and feasibility

    Horizontal Integration of Warfighter Intelligence Data: A Shared Semantic Resource for the Intelligence Community

    Get PDF
    We describe a strategy that is being used for the horizontal integration of warfighter intelligence data within the framework of the US Army’s Distributed Common Ground System Standard Cloud (DSC) initiative. The strategy rests on the development of a set of ontologies that are being incrementally applied to bring about what we call the ‘semantic enhancement’ of data models used within each intelligence discipline. We show how the strategy can help to overcome familiar tendencies to stovepiping of intelligence data, and describe how it can be applied in an agile fashion to new data resources in ways that address immediate needs of intelligence analysts

    Prototype system for supporting the incremental modelling of vague geometric configurations

    Get PDF
    In this paper the need for Intelligent Computer Aided Design (Int.CAD) to jointly support design and learning assistance is introduced. The paper focuses on presenting and exploring the possibility of realizing learning assistance in Int.CAD by introducing a new concept called Shared Learning. Shared Learning is proposed to empower CAD tools with more useful learning capabilities than that currently available and thereby provide a stronger interaction of learning between a designer and a computer. Controlled computational learning is proposed as a means whereby the Shared Learning concept can be realized. The viability of this new concept is explored by using a system called PERSPECT. PERSPECT is a preliminary numerical design tool aimed at supporting the effective utilization of numerical experiential knowledge in design. After a detailed discussion of PERSPECT's numerical design support, the paper presents the results of an evaluation that focuses on PERSPECT's implementation of controlled computational learning and ability to support a designer's need to learn. The paper then discusses PERSPECT's potential as a tool for supporting the Shared Learning concept by explaining how a designer and PERSPECT can jointly learn. There is still much work to be done before the full potential of Shared Learning can be realized. However, the authors do believe that the concept of Shared Learning may hold the key to truly empowering learning in Int.CAD

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.
    • 

    corecore