3,289 research outputs found

    An Overview of Rough Set Semantics for Modal and Quantifier Logics

    Get PDF

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Modelling default and likelihood reasoning as probabilistic

    Get PDF
    A probabilistic analysis of plausible reasoning about defaults and about likelihood is presented. 'Likely' and 'by default' are in fact treated as duals in the same sense as 'possibility' and 'necessity'. To model these four forms probabilistically, a logic QDP and its quantitative counterpart DP are derived that allow qualitative and corresponding quantitative reasoning. Consistency and consequence results for subsets of the logics are given that require at most a quadratic number of satisfiability tests in the underlying propositional logic. The quantitative logic shows how to track the propagation error inherent in these reasoning forms. The methodology and sound framework of the system highlights their approximate nature, the dualities, and the need for complementary reasoning about relevance

    A proposed framework for characterising uncertainty and variability in rock mechanics and rock engineering

    Get PDF
    This thesis develops a novel understanding of the fundamental issues in characterising and propagating unpredictability in rock engineering design. This unpredictability stems from the inherent complexity and heterogeneity of fractured rock masses as engineering media. It establishes the importance of: a) recognising that unpredictability results from epistemic uncertainty (i.e. resulting from a lack of knowledge) and aleatory variability (i.e. due to inherent randomness), and; b) the means by which uncertainty and variability associated with the parameters that characterise fractured rock masses are propagated through the modelling and design process. Through a critical review of the literature, this thesis shows that in geotechnical engineering – rock mechanics and rock engineering in particular – there is a lack of recognition in the existence of epistemic uncertainty and aleatory variability, and hence inappropriate design methods are often used. To overcome this, a novel taxonomy is developed and presented that facilitates characterisation of epistemic uncertainty and aleatory variability in the context of rock mechanics and rock engineering. Using this taxonomy, a new framework is developed that gives a protocol for correctly propagating uncertainty and variability through engineering calculations. The effectiveness of the taxonomy and the framework are demonstrated through their application to simple challenge problems commonly found in rock engineering. This new taxonomy and framework will provide engineers engaged in preparing rock engineering designs an objective means of characterising unpredictability in parameters commonly used to define properties of fractured rock masses. These new tools will also provide engineers with a means of clearly understanding the true nature of unpredictability inherent in rock mechanics and rock engineering, and thus direct selection of an appropriate unpredictability model to propagate unpredictability faithfully through engineering calculations. Thus, the taxonomy and framework developed in this thesis provide practical tools to improve the safety of rock engineering designs through an improved understanding of the unpredictability concepts.Open Acces

    Fuzzy-rough set and fuzzy ID3 decision approaches to knowledge discovery in datasets

    Get PDF
    Fuzzy rough sets are the generalization of traditional rough sets to deal with both fuzziness and vagueness in data. The existing researches on fuzzy rough sets mainly concentrate on the construction of approximation operators. Less effort has been put on the knowledge discovery in datasets with fuzzy rough sets. This paper mainly focuses on knowledge discovery in datasets with fuzzy rough sets. After analyzing the previous works on knowledge discovery with fuzzy rough sets, we introduce formal concepts of attribute reduction with fuzzy rough sets and completely study the structure of attribute reduction

    Statistical modelling of categorical data under ontic and epistemic imprecision

    Get PDF

    Use of Multi-Criteria Decision Analysis with Fuzzy Measures in Historical GIS

    Get PDF
    Geographic information systems (GIS) can enhance historical research by providing tools to explore the spatial relationships of locations in historical sources. However, no widespread methods currently exist for translating vaguely defined historical spatial information into GIS data formats and producing a location estimate. Other GIS techniques do exist that can model the necessary process. Multi-criteria decision analysis with fuzzy measures can be applied to vague historical records to approximate location. The Wieslander Vegetation Type Map dataset is used to demonstrate the model effectiveness. Results show that this technique successfully translated written descriptions of location into raster, or grid-based, surfaces within a GIS. Given the uncertainty of the qualitative descriptions, the technique resolved the text into a collection of locations instead of a single location, with a probability assigned to each location conveying the ambiguity associated with the results and the probabilistic nature of its interpretation
    corecore