71 research outputs found

    Energy Efficient Hardware Design for Securing the Internet-of-Things

    Full text link
    The Internet of Things (IoT) is a rapidly growing field that holds potential to transform our everyday lives by placing tiny devices and sensors everywhere. The ubiquity and scale of IoT devices require them to be extremely energy efficient. Given the physical exposure to malicious agents, security is a critical challenge within the constrained resources. This dissertation presents energy-efficient hardware designs for IoT security. First, this dissertation presents a lightweight Advanced Encryption Standard (AES) accelerator design. By analyzing the algorithm, a novel method to manipulate two internal steps to eliminate storage registers and replace flip-flops with latches to save area is discovered. The proposed AES accelerator achieves state-of-art area and energy efficiency. Second, the inflexibility and high Non-Recurring Engineering (NRE) costs of Application-Specific-Integrated-Circuits (ASICs) motivate a more flexible solution. This dissertation presents a reconfigurable cryptographic processor, called Recryptor, which achieves performance and energy improvements for a wide range of security algorithms across public key/secret key cryptography and hash functions. The proposed design employs circuit techniques in-memory and near-memory computing and is more resilient to power analysis attack. In addition, a simulator for in-memory computation is proposed. It is of high cost to design and evaluate new-architecture like in-memory computing in Register-transfer level (RTL). A C-based simulator is designed to enable fast design space exploration and large workload simulations. Elliptic curve arithmetic and Galois counter mode are evaluated in this work. Lastly, an error resilient register circuit, called iRazor, is designed to tolerate unpredictable variations in manufacturing process operating temperature and voltage of VLSI systems. When integrated into an ARM processor, this adaptive approach outperforms competing industrial techniques such as frequency binning and canary circuits in performance and energy.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147546/1/zhyiqun_1.pd

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Architecture Independent Timing Speculation Techniques in VLSI Circuits.

    Full text link
    Conventional digital circuits must ensure correct operation throughout a wide range of operating conditions including process, voltage, and temperature variation. These conditions have an effect on circuit delays, and safety margins must be put in place which come at a power and performance cost. The Razor system proposed eliminating these timing margins by running a circuit with occasional timing errors and correcting the errors when they occur. Several existing Razor style designs have been proposed, however prior to this work, Razor could not be applied blindly or automatically to designs, as the various error correction schemes modified the architecture of the target design. Because of the architectural invasiveness and design complexities of these techniques, no published Razor style system had been applied to a complete existing commercial processor. Additionally, in all prior Razor-style systems, there is a fundamental tradeoff between speculation window and short path, or minimum delay, constraints, limiting the technique’s effectiveness. This thesis introduces the concept of Razor using two-phase latch based timing. By identifying and utilizing time borrowing as an error correction mechanism, it allows for Razor to be applied without the need to reload data or replay instructions. This allows for Razor to be blindly and automatically applied to existing designs without detailed knowledge of internal architecture. Additionally, latch based Razor allows for large speculation windows, up to 100% of nominal circuit delay, because it breaks the connection between minimum delay constraints and speculation window. By demonstrating how to transform conventional flip-flop based designs, including those which make use of clock gating, to two-phase latch based timing, Razor can be automatically added to a large set of existing digital designs. Two forms of latch based Razor are proposed. First, Bubble Razor involves rippling stall cycles throughout a circuit in response to timing errors and is applied to the ARM Cortex-M3 processor, the first ever application of a Razor technique to a complete, existing processor design. Additional work applies Bubble Razor to the ARM Cortex-R4 processor. The second latch based Razor technique, Voltage Razor, uses voltage boosting to correct for timing errors.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102461/1/mfojtik_1.pd

    Techniques d'abstraction pour l'analyse et la mitigation des effets dus à la radiation

    Get PDF
    The main objective of this thesis is to develop techniques that can beused to analyze and mitigate the effects of radiation-induced soft errors in industrialscale integrated circuits. To achieve this goal, several methods have been developedbased on analyzing the design at higher levels of abstraction. These techniquesaddress both sequential and combinatorial SER.Fault-injection simulations remain the primary method for analyzing the effectsof soft errors. In this thesis, techniques which significantly speed-up fault-injectionsimulations are presented. Soft errors in flip-flops are typically mitigated by selectivelyreplacing the most critical flip-flops with hardened implementations. Selectingan optimal set to harden is a compute intensive problem and the second contributionconsists of a clustering technique which significantly reduces the number offault-injections required to perform selective mitigation.In terrestrial applications, the effect of soft errors in combinatorial logic hasbeen fairly small. It is known that this effect is growing, yet there exist few techniqueswhich can quickly estimate the extent of combinatorial SER for an entireintegrated circuit. The third contribution of this thesis is a hierarchical approachto combinatorial soft error analysis.Systems-on-chip are often developed by re-using design-blocks that come frommultiple sources. In this context, there is a need to develop and exchange reliabilitymodels. The final contribution of this thesis consists of an application specificmodeling language called RIIF (Reliability Information Interchange Format). Thislanguage is able to model how faults at the gate-level propagate up to the block andchip-level. Work is underway to standardize the RIIF modeling language as well asto extend it beyond modeling of radiation-induced failures.In addition to the main axis of research, some tangential topics were studied incollaboration with other teams. One of these consisted in the development of a novelapproach for protecting ternary content addressable memories (TCAMs), a specialtype of memory important in networking applications. The second supplementalproject resulted in an algorithm for quickly generating approximate redundant logicwhich can protect combinatorial networks against permanent faults. Finally anapproach for reducing the detection time for errors in the configuration RAM forField-Programmable Gate-Arrays (FPGAs) was outlined.Les effets dus à la radiation peuvent provoquer des pannes dans des circuits intégrés. Lorsqu'une particule subatomique, fait se déposer une charge dans les régions sensibles d'un transistor cela provoque une impulsion de courant. Cette impulsion peut alors engendrer l'inversion d'un bit ou se propager dans un réseau de logique combinatoire avant d'être échantillonnée par une bascule en aval.Selon l'état du circuit au moment de la frappe de la particule et selon l'application, cela provoquera une panne observable ou non. Parmi les événements induits par la radiation, seule une petite portion génère des pannes. Il est donc essentiel de déterminer cette fraction afin de prédire la fiabilité du système. En effet, les raisons pour lesquelles une perturbation pourrait être masquée sont multiples, et il est de plus parfois difficile de préciser ce qui constitue une erreur. A cela s'ajoute le fait que les circuits intégrés comportent des milliards de transistors. Comme souvent dans le contexte de la conception assisté par ordinateur, les approches hiérarchiques et les techniques d'abstraction permettent de trouver des solutions.Cette thèse propose donc plusieurs nouvelles techniques pour analyser les effets dus à la radiation. La première technique permet d'accélérer des simulations d'injections de fautes en détectant lorsqu'une faute a été supprimée du système, permettant ainsi d'arrêter la simulation. La deuxième technique permet de regrouper en ensembles les éléments d'un circuit ayant une fonction similaire. Ensuite, une analyse au niveau des ensemble peut être faite, identifiant ainsi ceux qui sont les plus critiques et qui nécessitent donc d'être durcis. Le temps de calcul est ainsi grandement réduit.La troisième technique permet d'analyser les effets des fautes transitoires dans les circuits combinatoires. Il est en effet possible de calculer à l'avance la sensibilité à des fautes transitoires de cellules ainsi que les effets de masquage dans des blocs fréquemment utilisés. Ces modèles peuvent alors être combinés afin d'analyser la sensibilité de grands circuits. La contribution finale de cette thèse consiste en la définition d'un nouveau langage de modélisation appelé RIIF (Reliability Information Ineterchange Format). Ce langage permet de décrire le taux des fautes dans des composants simples en fonction de leur environnement de fonctionnement. Ces composants simples peuvent ensuite être combinés permettant ainsi de modéliser la propagation de leur fautes vers des pannes au niveau système. En outre, l'utilisation d'un langage standard facilite l'échange de données de fiabilité entre les partenaires industriels.Au-delà des contributions principales, cette thèse aborde aussi des techniques permettant de protéger des mémoires associatives ternaires (TCAMs). Les approches classiques de protection (codes correcteurs) ne s'appliquent pas directement. Une des nouvelles techniques proposées consiste à utiliser une structure de données qui peut détecter, d'une manière statistique, quand le résultat n'est pas correct. La probabilité de détection peut être contrôlée par le nombre de bits alloués à cette structure. Une autre technique consiste à utiliser un détecteur de courant embarqué (BICS) afin de diriger un processus de fond directement vers le région touchée par une erreur. La contribution finale consiste en un algorithme qui permet de synthétiser de la logique combinatoire afin de protéger des circuits combinatoires contre les fautes transitoires.Dans leur ensemble, ces techniques facilitent l'analyse des erreurs provoquées par les effets dus à la radiation dans les circuits intégrés, en particulier pour les très grands circuits composés de blocs provenant de divers fournisseurs. Des techniques pour mieux sélectionner les bascules/flip-flops à durcir et des approches pour protéger des TCAMs ont étés étudiées

    Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

    Get PDF
    Rapid device-miniaturization keeps on inducing challenges in building energy efficient microprocessors. As the size of the transistors continuously decreasing, more uncertainties emerge in their operations. On the other hand, integrating more and more transistors on a single chip accentuates the need to lower its supply-voltage. This dissertation investigates one of the primary device uncertainties - timing error, in microprocessor performance bottleneck in NTC era. Then it proposes various innovative techniques to exploit these opportunities to maintain processor energy efficiency, in the context of emerging challenges. Evaluated with the cross-layer methodology, the proposed approaches achieve substantial improvements in processor energy efficiency, compared to other start-of-art techniques

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Containing the Nanometer “Pandora-Box”: Cross-Layer Design Techniques for Variation Aware Low Power Systems

    Get PDF
    The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling—parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today’s systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs (logic, memory, mixed-signal) that are included in today’s complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems
    corecore