3,937 research outputs found

    Implementation of a Hardware/Software Platform for Real-Timedata-Intensive Applications in Hazardous Environments

    Get PDF
    Real-Time Technology and Applications Symposium. Brookline, MA, USA, 10-12 Oct. 1996In real-time data-intensive applications, the simultaneous achievement of the required performance and determinism is a difficult issue to address, mainly due to the time needed to perform I/O operations, which is more significant than the CPU processing time. Additional features need to be considered if these applications are intended to perform in hostile environments. In this paper, we address the implementation of a hardware/software platform designed to acquire, transfer, process and store massive amounts of information at sustained rates of several MBytes/sec, capable of supporting real-time applications with stringent throughput requirements under hazardous environmental conditions. A real-world system devoted to the inspection of nuclear power plants is presented as an illustrative examplePublicad

    ์‹ค์‹œ๊ฐ„ ๊ทผ๊ฑฐ๋ฆฌ ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ MIMO ์—ญํ•ฉ์„ฑ ๊ฐœ๊ตฌ ๋ ˆ์ด๋” ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ๋‚จ์ƒ์šฑ.Microwave and millimeter wave (micro/mmW) imaging systems have advantages over other imaging systems in that they have penetration properties over non-metallic structures and non-ionization. However, these systems are commercially applicable in limited areas. Depending on the quality and size of the images, a system can be expensive and images cannot be provided in real-time. To overcome the challenges of the current micro/mmW imaging system, it is critical to suggest a new system concept and prove its potential benefits and hazards by demonstrating the testbed. This dissertation presents Ku1DMIC, a wide-band micro/mmW imaging system using Ku-band and 1D-MIMO array, which can overcome the challenges above. For cost-effective 3D imaging capabilities, Ku1DMIC uses 1D-MIMO array configuration and inverse synthetic aperture radar (ISAR) technique. At the same time, Ku1DMIC supports real-time data acquisition through a system-level design of a seamless interface with frequency modulated continuous wave (FMCW) radar. To show the feasibility of 3D imaging with Ku1DMIC and its real-time capabilities, an accelerated imaging algorithm, 1D-MIMO-ISAR RSA, is proposed and demonstrated. The detailed contributions of the dissertation are as follows. First, this dissertation presents Ku1DMIC โ€“ a Ku-band MIMO frequency-modulated continuous-wave (FMCW) radar experimental platform with real-time 2D near-field imaging capabilities. The proposed system uses Ku-band to cover the wider illumination area given the limited number of antennas and uses a fast ramp and wide-band FMCW waveform for rapid radar data acquisition while providing high-resolution images. The key design aspect behind the platform is stability, reconfigurability, and real-time capabilities, which allows investigating the exploration of the systemโ€™s strengths and weaknesses. To satisfy the design aspect, a digitally assisted platform is proposed and realized based on an AMD-Xilinx UltraScale+ Radio Frequency System on Chip (RFSoC). The experimental investigation for real-time 2D imaging has proved the ability of video-rate imaging at around 60 frames per second. Second, a waveform digital pre-distortion (DPD) method and calibration method are proposed to enhance the image quality. Even if a clean FMCW waveform is generated with the aid of the optimized waveform generator, the signal will inevitably suffer from distortion, especially in the RF subsystem of the platform. In near-field imaging applications, the waveform DPD is not effective at suppressing distortion in wide-band FMCW radar systems. To solve this issue, the LO-DPD architecture and binary search based DPD algorithm are proposed to make the waveform DPD effective in Ku1DMIC. Furthermore, an image-domain optimization correction method is proposed to compensate for the remaining errors that cannot be eliminated by the waveform DPD. For robustness to various unwanted signals such as noise and clutter signals, two regularized least squares problems are applied and compared: the generalized Tikhonov regularization and the total variation (TV) regularization. Through various 2D imaging experiments, it is confirmed that both methods can enhance the image quality by reducing the sidelobe level. Lastly, the research is conducted to realize real-time 3D imaging by applying the ISAR technique to Ku1DMIC. The realization of real-time 3D imaging using 1D-MIMO array configuration is impactful in that this configuration can significantly reduce the costs of the 3D imaging system and enable imaging of moving objects. To this end, the signal model for the 1D-MIMO-ISAR configuration is presented, and then the 1D-MIMO-ISAR range stacking algorithm (RSA) is proposed to accelerate the imaging reconstruction process. The proposed 1D-MIMO-ISAR RSA can reconstruct images within hundreds of milliseconds while maintaining almost the same image quality as the back-projection algorithm, bringing potential use for real-time 3D imaging. It also describes strategies for setting ROI, considering the real-world situations in which objects enter and exit the field of view, and allocating GPU memory. Extensive simulations and experiments have demonstrated the feasibility and potential benefits of 1D-MIMO-IASR configuration and 1D-MIMO-ISAR RSA.๋งˆ์ดํฌ๋กœํŒŒ ๋ฐ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ(micro/mmW) ์˜์ƒํ™” ์‹œ์Šคํ…œ์€ ๋น„๊ธˆ์† ๊ตฌ์กฐ ๋ฐ ๋น„์ด์˜จํ™”์— ๋น„ํ•ด ์นจํˆฌ ํŠน์„ฑ์ด ์žˆ๋‹ค๋Š” ์ ์—์„œ ๋‹ค๋ฅธ ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์— ๋น„ํ•ด ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ์ œํ•œ๋œ ์˜์—ญ์—์„œ๋งŒ ์ƒ์—…์ ์œผ๋กœ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ๊ณผ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์‹œ์Šคํ…œ์ด ๋งค์šฐ ๊ณ ๊ฐ€์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด๋ฏธ์ง€๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ œ๊ณตํ•  ์ˆ˜ ์—†๋Š” ํ˜„ํ™ฉ์ด๋‹ค. ํ˜„์žฌ์˜ micro/mmW ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋ฉด ์ƒˆ๋กœ์šด ์‹œ์Šคํ…œ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ  ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ์‹œ์—ฐํ•˜์—ฌ ์ž ์žฌ์ ์ธ ์ด์ ๊ณผ ์œ„ํ—˜์„ ์ž…์ฆํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Ku-band์™€ 1D-MIMO ์–ด๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๊ด‘๋Œ€์—ญ micro/mmW ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์ธ Ku1DMIC๋ฅผ ์ œ์•ˆํ•˜์—ฌ ์œ„์™€ ๊ฐ™์€ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋น„์šฉ ํšจ์œจ์ ์ธ 3์ฐจ์› ์˜์ƒํ™” ๊ธฐ๋Šฅ์„ ์œ„ํ•ด Ku1DMIC๋Š” 1D-MIMO ๋ฐฐ์—ด ๊ธฐ์ˆ ๊ณผ ISAR(Inverse Synthetic Aperture Radar) ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋™์‹œ์— Ku1DMIC๋Š” ์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ ์—ฐ์†ํŒŒ (FMCW) ๋ ˆ์ด๋”์™€์˜ ์›ํ™œํ•œ ์ธํ„ฐํŽ˜์ด์Šค์˜ ์‹œ์Šคํ…œ ์ˆ˜์ค€ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์ง€์›ํ•œ๋‹ค. Ku1DMIC๋ฅผ ์‚ฌ์šฉํ•œ 3์ฐจ์› ์˜์ƒํ™”์˜ ๊ตฌํ˜„ ๋ฐ ์‹ค์‹œ๊ฐ„ ๊ธฐ๋Šฅ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, 2์ฐจ์› ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ 1D-MIMO RSA๊ณผ 3์ฐจ์› ์˜์ƒํ™”๋ฅผ ์œ„ํ•œ 1D-MIMO-ISAR RSA๊ฐ€ ์ œ์•ˆ๋˜๊ณ  Ku1DMIC์—์„œ ๊ตฌํ˜„๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์ฃผ์š” ๊ธฐ์—ฌ๋Š” Ku-band 1D-MIMO ๋ฐฐ์—ด ๊ธฐ๋ฐ˜ ์˜์ƒํ™” ์‹œ์Šคํ…œ ํ”„๋กœํ† ํƒ€์ž…์„ ๊ฐœ๋ฐœ ๋ฐ ํ…Œ์ŠคํŠธํ•˜๊ณ , ISAR ๊ธฐ๋ฐ˜ 3์ฐจ์› ์˜์ƒํ™” ๊ธฐ๋Šฅ์„ ๊ฒ€์‚ฌํ•˜๊ณ , ์‹ค์‹œ๊ฐ„ 3์ฐจ์› ์˜์ƒํ™” ๊ฐ€๋Šฅ์„ฑ์„ ์กฐ์‚ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด์— ๋Œ€ํ•œ ์„ธ๋ถ€์ ์ธ ๊ธฐ์—ฌ ํ•ญ๋ชฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์‹ค์‹œ๊ฐ„ 2D ๊ทผ๊ฑฐ๋ฆฌ์žฅ ์ด๋ฏธ์ง• ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ Ku ๋Œ€์—ญ MIMO ์ฃผํŒŒ์ˆ˜ ๋ณ€์กฐ ์—ฐ์†ํŒŒ(FMCW) ๋ ˆ์ด๋” ์‹คํ—˜ ํ”Œ๋žซํผ์ธ Ku1DMIC๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์‹œ์Šคํ…œ์€ ์ œํ•œ๋œ ์ˆ˜์˜ ์•ˆํ…Œ๋‚˜์—์„œ ๋” ๋„“์€ ์กฐ๋ช… ์˜์—ญ์„ ์ปค๋ฒ„ํ•˜๊ธฐ ์œ„ํ•ด Ku ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•˜๊ณ  ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ณตํ•˜๋ฉด์„œ ๋น ๋ฅธ ๋ ˆ์ด๋” ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ์œ„ํ•ด ๊ณ ์† ๋žจํ”„ ๋ฐ ๊ด‘๋Œ€์—ญ FMCW ํŒŒํ˜•์„ ์‚ฌ์šฉํ•œ๋‹ค. ํ”Œ๋žซํผ์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ์›์น™์€ ์•ˆ์ •์„ฑ, ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์‹ค์‹œ๊ฐ„ ๊ธฐ๋Šฅ์œผ๋กœ ์‹œ์Šคํ…œ์˜ ๊ฐ•์ ๊ณผ ์•ฝ์ ์„ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํƒ์ƒ‰ํ•œ๋‹ค. ์„ค๊ณ„ ์›์น™์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด AMD-Xilinx UltraScale+ RFSoC(Radio Frequency System on Chip)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋””์ง€ํ„ธ ์ง€์› ํ”Œ๋žซํผ์„ ์ œ์•ˆํ•˜๊ณ  ๊ตฌํ˜„ํ•œ๋‹ค. ์‹ค์‹œ๊ฐ„ 2D ์ด๋ฏธ์ง•์— ๋Œ€ํ•œ ์‹คํ—˜์  ์กฐ์‚ฌ๋Š” ์ดˆ๋‹น ์•ฝ 60ํ”„๋ ˆ์ž„์—์„œ ๋น„๋””์˜ค ์†๋„ ์ด๋ฏธ์ง•์˜ ๋Šฅ๋ ฅ์„ ์ž…์ฆํ–ˆ๋‹ค. ๋‘˜์งธ, ์˜์ƒ ํ’ˆ์งˆ ํ–ฅ์ƒ์„ ์œ„ํ•œ ํŒŒํ˜• ๋””์ง€ํ„ธ ์ „์น˜์™œ๊ณก(DPD) ๋ฐฉ๋ฒ•๊ณผ ๋ณด์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ตœ์ ํ™”๋œ ํŒŒํ˜• ๋ฐœ์ƒ๊ธฐ์˜ ๋„์›€์œผ๋กœ ๊นจ๋—ํ•œ FMCW ํŒŒํ˜•์ด ์ƒ์„ฑ๋˜๋”๋ผ๋„ ํŠนํžˆ ํ”Œ๋žซํผ์˜ RF ํ•˜์œ„ ์‹œ์Šคํ…œ์—์„œ ์‹ ํ˜ธ๋Š” ํ•„์—ฐ์ ์œผ๋กœ ์™œ๊ณก์„ ๊ฒช๊ฒŒ๋œ๋‹ค. ๊ทผ๊ฑฐ๋ฆฌ ์˜์ƒํ™” ์‘์šฉ ๋ถ„์•ผ์—์„œ๋Š” ํŒŒํ˜• DPD๋Š” ๊ด‘๋Œ€์—ญ FMCW ๋ ˆ์ด๋” ์‹œ์Šคํ…œ์˜ ์™œ๊ณก์„ ์–ต์ œํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ด์ง€ ์•Š๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Ku1DMIC์—์„œ ํŒŒํ˜• DPD๊ฐ€ ์œ ํšจํ•˜๋„๋ก LO-DPD ์•„ํ‚คํ…์ฒ˜์™€ ์ด์ง„ ํƒ์ƒ‰ ๊ธฐ๋ฐ˜ DPD ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ํŒŒํ˜• DPD๋กœ ์ œ๊ฑฐํ•  ์ˆ˜ ์—†๋Š” ๋‚˜๋จธ์ง€ ์˜ค๋ฅ˜๋ฅผ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด ์ด๋ฏธ์ง€ ์˜์—ญ ์ตœ์ ํ™” ๋ณด์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋…ธ์ด์ฆˆ ๋ฐ ํด๋Ÿฌํ„ฐ ์‹ ํ˜ธ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์›์น˜ ์•Š๋Š” ์‹ ํ˜ธ์— ๋Œ€ํ•œ ๊ฒฌ๊ณ ์„ฑ์„ ์œ„ํ•ด ์ผ๋ฐ˜ํ™”๋œ Tikhonov ์ •๊ทœํ™” ๋ฐ ์ „์ฒด ๋ณ€๋™(TV) ์ •๊ทœํ™”๋ผ๋Š” ๋‘ ๊ฐ€์ง€ ์ •๊ทœํ™”๋œ ์ตœ์†Œ ์ž์Šน ๋ฌธ์ œ๋ฅผ ์ ์šฉ ํ›„ ๋น„๊ตํ•œ๋‹ค. ๋‹ค์–‘ํ•œ 2์ฐจ์› ์˜์ƒํ™” ์‹คํ—˜์„ ํ†ตํ•ด ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ ๋ถ€์—ฝ ๋ ˆ๋ฒจ์„ ์ค„์—ฌ ํ™”์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ISAR ๊ธฐ๋ฒ•์„ 2์ฐจ์› ์˜์ƒ ํ”Œ๋žซํผ์— ์ ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ 3์ฐจ์› ์˜์ƒ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. 1D-MIMO-ISAR ๊ตฌ์„ฑ์—์„œ ์‹ค์‹œ๊ฐ„ 3D ์ด๋ฏธ์ง•์˜ ๊ตฌํ˜„์€ ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ์ด 3D ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ์˜ ๋น„์šฉ์„ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์˜ํ–ฅ๋ ฅ์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” 1D-MIMO-ISAR ๊ตฌ์„ฑ์— ๋Œ€ํ•œ ์ด๋ฏธ์ง• ์žฌ๊ตฌ์„ฑ์„ ๊ฐ€์†ํ™”ํ•˜๊ธฐ ์œ„ํ•ด 1D-MIMO-ISAR ๋ฒ”์œ„ ์Šคํƒœํ‚น ์•Œ๊ณ ๋ฆฌ์ฆ˜(RSA)์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ 1D-MIMO-ISAR RSA๋Š” ๋„๋ฆฌ ์•Œ๋ ค์ง„ Back-Projection ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฑฐ์˜ ๋™์ผํ•œ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ์ˆ˜๋ฐฑ ๋ฐ€๋ฆฌ์ดˆ ์ด๋‚ด์— ์ด๋ฏธ์ง€๋ฅผ ์žฌ๊ตฌ์„ฑํ•จ์œผ๋กœ์จ ์‹ค์‹œ๊ฐ„ ์˜์ƒํ™”์— ๋Œ€ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด๊ฐ€ ์‹œ์•ผ์— ๋“ค์–ด์˜ค๊ณ  ๋‚˜๊ฐ€๋Š” ์‹ค์ œ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•œ ROI ์„ค์ •, ๊ทธ๋ฆฌ๊ณ  ๋ฉ”๋ชจ๋ฆฌ ํ• ๋‹น์— ๋Œ€ํ•œ ์ „๋žต์„ ์„ค๋ช…ํ•œ๋‹ค. ๊ด‘๋ฒ”์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด 1D-MIMO-IASR ๊ตฌ์„ฑ ๋ฐ 1D-MIMO-ISAR RSA์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ž ์žฌ์  ์ด์ ์„ ํ™•์ธํ•œ๋‹ค.1 INTRODUCTION 1 1.1 Microwave and millimeter-wave imaging 1 1.2 Imaging with radar system 2 1.3 Challenges and motivation 5 1.4 Outline of the dissertation 8 2 FUNDAMENTAL OF TWO-DIMENSIONAL IMAGING USING A MIMO RADAR 9 2.1 Signal model 9 2.2 Consideration of waveform 12 2.3 Image reconstruction algorithm 16 2.3.1 Back-projection algorithm 16 2.3.2 1D-MIMO range-migration algorithm 20 2.3.3 1D-MIMO range stacking algorithm 27 2.4 Sampling criteria and resolution 31 2.5 Simulation results 36 3 MIMO-FMCW RADAR IMPLEMENTATION WITH 16 TX - 16 RX ONE- DIMENSIONAL ARRAYS 46 3.1 Wide-band FMCW waveform generator architecture 46 3.2 Overall system architecture 48 3.3 Antenna and RF transceiver module 53 3.4 Wide-band FMCW waveform generator 55 3.5 FPGA-based digital hardware design 63 3.6 System integration and software design 71 3.7 Testing and measurement 75 3.7.1 Chirp waveform measurement 75 3.7.2 Range profile measurement 77 3.7.3 2-D imaging test 79 4 METHODS OF IMAGE QUALITY ENHANCEMENT 84 4.1 Signal model 84 4.2 Digital pre-distortion of chirp signal 86 4.2.1 Proposed DPD hardware system 86 4.2.2 Proposed DPD algorithm 88 4.2.3 Measurement results 90 4.3 Robust calibration method for signal distortion 97 4.3.1 Signal model 98 4.3.2 Problem formulation 99 4.3.3 Measurement results 105 5 THREE-DIMENSIONAL IMAGING USING 1-D ARRAY SYSTEM AND ISAR TECHNIQUE 110 5.1 Formulation for 1D-MIMO-ISAR RSA 111 5.2 Algorithm implementation 114 5.3 Simulation results 120 5.4 Experimental results 122 6 CONCLUSIONS AND FUTURE WORK 127 6.1 Conclusions 127 6.2 Future work 129 6.2.1 Effects of antenna polarization in the Ku-band 129 6.2.2 Forward-looking near-field ISAR configuration 130 6.2.3 Estimation of the movement errors in ISAR configuration 131 Abstract (In Korean) 145 Acknowlegement 148๋ฐ•

    Learning About And Becoming Aware Of Reading Strategies And Metacognition In English By Adult Second Language Learners

    Get PDF
    The purpose of the present study was to investigate the need to learn and/or become aware of reading strategies and metacognitive strategies by adult English language learners while making sense of English texts. A mixed method grounded theory (MMGT) in a sequential design (quantitative Qualitative) with a qualitative dominant status was employed to collect and analyze data. In the quantitative phase of this study, data were collected by administrating a background questionnaire and the Survey of Reading Strategies (SORS). Data collected by these tools were statistically analyzed with descriptive analysis and one-way Analysis of Variance. In the qualitative phase of this study, data were collected through retrospective miscue analysis (RMA) and semi-structured interviews. Data collected by these methods were coded in order to verify reading patterns among participants. Quantitative results demonstrated that second language learners from different language backgrounds and English proficiency levels perceived the use of reading strategies differently. Qualitative results demonstrated that Saudi-Arabian second language learners tend to transfer their reading strategy in relying on small grain size units while reading in English. These results bring a new perspective to the second language reading field by demonstrating that second language learners from different language backgrounds apply reading strategies differently based on their initial reading development in their first languages

    Validation Through Simulations of a Cn2 Profiler for the ESO/VLT Adaptive Optics Facility

    Full text link
    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.Comment: 15 pages, 12 figures, accepted for publication in the MNRAS Accepted 2015 January 22. Received 2015 January 21; in original form 2014 December

    Property Rights and Environmental Policy: A New Zealand Perspective

    Get PDF
    This paper is intended to lay out a preliminary foundation for applying a property rights perspective to environmental policy issues facing New Zealand. It does not attempt to apply such an approach to any specific issue. Rather it summarises the core principles behind effective rights regimes (illustrated by the evolution of rights over time), reviews how such regimes have been applied to environmental issues internationally, and describes current natural resource rights regimes in New Zealand. The purpose of applying property rights to the environment can vary widely and reflect quite different perspectives. Regulation by any form, however, whether command-and-control or market-based, creates or modifies property rights. While private property rights will not always be appropriate, the alternatives redefine and reallocate rights rather than eliminating them. A common or public property right remains a right held by someone. The choice is not therefore whether to modify property rights to improve environmental outcomes, but how to do so in a way that optimises national welfare. However, if more use of market-based instruments is appropriate, then the work required to create the legal, institutional and scientific framework to successfully implement them (including trading off social, economic and environmental outcomes) should not be under-estimated. Fishing and water rights demonstrate these difficulties and the payoff (for fisheries at least) that can be achieved.Property Rights, Transferability, Market Based Instruments (MBI), Environmental Policy, New Zealand

    3D registration and integrated segmentation framework for heterogeneous unmanned robotic systems

    Get PDF
    The paper proposes a novel framework for registering and segmenting 3D point clouds of large-scale natural terrain and complex environments coming from a multisensor heterogeneous robotics system, consisting of unmanned aerial and ground vehicles. This framework involves data acquisition and pre-processing, 3D heterogeneous registration and integrated multi-sensor based segmentation modules. The first module provides robust and accurate homogeneous registrations of 3D environmental models based on sensors' measurements acquired from the ground (UGV) and aerial (UAV) robots. For 3D UGV registration, we proposed a novel local minima escape ICP (LME-ICP) method, which is based on the well known iterative closest point (ICP) algorithm extending it by the introduction of our local minima estimation and local minima escape mechanisms. It did not require any prior known pose estimation information acquired from sensing systems like odometry, global positioning system (GPS), or inertial measurement units (IMU). The 3D UAV registration has been performed using the Structure from Motion (SfM) approach. In order to improve and speed up the process of outliers removal for large-scale outdoor environments, we introduced the Fast Cluster Statistical Outlier Removal (FCSOR) method. This method was used to filter out the noise and to downsample the input data, which will spare computational and memory resources for further processing steps. Then, we co-registered a point cloud acquired from a laser ranger (UGV) and a point cloud generated from images (UAV) generated by the SfM method. The 3D heterogeneous module consists of a semi-automated 3D scan registration system, developed with the aim to overcome the shortcomings of the existing fully automated 3D registration approaches. This semi-automated registration system is based on the novel Scale Invariant Registration Method (SIRM). The SIRM provides the initial scaling between two heterogenous point clouds and provides an adaptive mechanism for tuning the mean scale, based on the difference between two consecutive estimated point clouds' alignment error values. Once aligned, the resulting homogeneous ground-aerial point cloud is further processed by a segmentation module. For this purpose, we have proposed a system for integrated multi-sensor based segmentation of 3D point clouds. This system followed a two steps sequence: ground-object segmentation and color-based region-growing segmentation. The experimental validation of the proposed 3D heterogeneous registration and integrated segmentation framework was performed on large-scale datasets representing unstructured outdoor environments, demonstrating the potential and benefits of the proposed semi-automated 3D registration system in real-world environments

    Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system

    Get PDF
    ยฉ 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexionโ€“extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system

    Characterisation of a horizontal axis wind turbineโ€™s tip and root vortices

    Get PDF
    The vortical near wake of a model horizontal axis wind turbine has been investigated experimentally in a water channel. The objective of this work is to study vortex interaction and stability of the helical vortex ๏ฌlaments within a horizontal axis wind turbine wake. The experimental model is a geometrically scaled version of the Tjรฆreborg wind turbine, which existed in western Denmark in the late 1980s. Here, the turbine was tested in both the upwind and downwind con๏ฌgurations. Qualitative ๏ฌ‚ow visualisations using hydrogen bubble, particle streakline and planar laser-induced ๏ฌ‚uorescence techniques were combined with quantitative data measurements taken using planar particle image velocimetry. Vortices were identi๏ฌed using velocity gradient tensor invariants. Parameters that describe the helical vortex wake, such as the helicoidal pitch, and vortex circulation, were determined for three tip speed ratios. Particular attention is given here to the root vortex, which has been investigated minimally to date. Signatures of the coherent tip vortices are seen throughout the measurement domain; however, the signature of the root vortex is only evident much closer to the rotor plane, irrespective of the turbine con๏ฌguration. It is postulated that the root vortex diffuses rapidly due to the effects of the turbine support geometries
    • โ€ฆ
    corecore