950 research outputs found

    Variable elimination for building interpreters

    Get PDF
    In this paper, we build an interpreter by reusing host language functions instead of recoding mechanisms of function application that are already available in the host language (the language which is used to build the interpreter). In order to transform user-defined functions into host language functions we use combinatory logic : lambda-abstractions are transformed into a composition of combinators. We provide a mechanically checked proof that this step is correct for the call-by-value strategy with imperative features.Comment: 33 page

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    Efficient and Reasonable Object-Oriented Concurrency

    Full text link
    Making threaded programs safe and easy to reason about is one of the chief difficulties in modern programming. This work provides an efficient execution model for SCOOP, a concurrency approach that provides not only data race freedom but also pre/postcondition reasoning guarantees between threads. The extensions we propose influence both the underlying semantics to increase the amount of concurrent execution that is possible, exclude certain classes of deadlocks, and enable greater performance. These extensions are used as the basis an efficient runtime and optimization pass that improve performance 15x over a baseline implementation. This new implementation of SCOOP is also 2x faster than other well-known safe concurrent languages. The measurements are based on both coordination-intensive and data-manipulation-intensive benchmarks designed to offer a mixture of workloads.Comment: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE '15). ACM, 201

    An Abstract Interpretation-based Model of Tracing Just-In-Time Compilation

    Get PDF
    Tracing just-in-time compilation is a popular compilation technique for the efficient implementation of dynamic languages, which is commonly used for JavaScript, Python and PHP. We provide a formal model of tracing JIT compilation of programs using abstract interpretation. Hot path detection corresponds to an abstraction of the trace semantics of the program. The optimization phase corresponds to a transform of the original program that preserves its trace semantics up to an observation modeled by some abstraction. We provide a generic framework to express dynamic optimizations and prove them correct. We instantiate it to prove the correctness of dynamic type specialization and constant variable folding. We show that our framework is more general than the model of tracing compilation introduced by Guo and Palsberg [2011] based on operational bisimulations.Comment: To appear in ACM Transactions on Programming Languages and System
    • 

    corecore