4,709 research outputs found

    A Multidimensional and Visual Exploration Approach to Project Portfolio Management

    Get PDF
    Managing projects in an organization, especially a project-oriented organization, is a challenging task. Project data has a large volume and is complex to manage. It is different from managing a single project, because one needs to integrate and synthesize information from multiple projects and multiple perspectives for high-level strategic business decisions, such as aligning projects with business objectives, balancing investment and expected return, and allocating resources. Current methods and tools either do not well integrate multiple aspects or are not intuitive and easy to use for managers and executives. In this dissertation project, a multidimensional and visual exploration approach was designed and evaluated to provide a unique and intuitive option to support decision making in project portfolio management. The research followed a general design science research methodology involving phases of awareness of problem, suggestion, development, evaluation and conclusion. The approach was implemented into a software system using a prototyping method and was evaluated through user interviews. The evaluation result demonstrates the utility and ease-of-use of the approach, and confirms design objectives. The research brings a new perspective and provides a new decision support tool for project portfolio management. It also contributes to the design knowledge of visual exploration systems for business portfolio management by theorizing the system

    31th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    Information modelling is becoming more and more important topic for researchers, designers, and users of information systems.The amount and complexity of information itself, the number of abstractionlevels of information, and the size of databases and knowledge bases arecontinuously growing. Conceptual modelling is one of the sub-areas ofinformation modelling. The aim of this conference is to bring together experts from different areas of computer science and other disciplines, who have a common interest in understanding and solving problems on information modelling and knowledge bases, as well as applying the results of research to practice. We also aim to recognize and study new areas on modelling and knowledge bases to which more attention should be paid. Therefore philosophy and logic, cognitive science, knowledge management, linguistics and management science are relevant areas, too. In the conference, there will be three categories of presentations, i.e. full papers, short papers and position papers

    Ontology based data warehousing for mining of heterogeneous and multidimensional data sources

    Get PDF
    Heterogeneous and multidimensional big-data sources are virtually prevalent in all business environments. System and data analysts are unable to fast-track and access big-data sources. A robust and versatile data warehousing system is developed, integrating domain ontologies from multidimensional data sources. For example, petroleum digital ecosystems and digital oil field solutions, derived from big-data petroleum (information) systems, are in increasing demand in multibillion dollar resource businesses worldwide. This work is recognized by Industrial Electronic Society of IEEE and appeared in more than 50 international conference proceedings and journals

    Conceptual models in industrial design.

    Get PDF

    Spatial Aspects of Metaphors for Information: Implications for Polycentric System Design

    Get PDF
    This dissertation presents three innovations that suggest an alternative approach to structuring information systems: a multidimensional heuristic workspace, a resonance metaphor for information, and a question-centered approach to structuring information relations. Motivated by the need for space to establish a question-centered learning environment, a heuristic workspace has been designed. Both the question-centered approach to information system design and the workspace have been conceived with the resonance metaphor in mind. This research stemmed from a set of questions aimed at learning how spatial concepts and related factors including geography may play a role in information sharing and public information access. In early stages of this work these concepts and relationships were explored through qualitative analysis of interviews centered on local small group and community users of geospatial data. Evaluation of the interviews led to the conclusion that spatial concepts are pervasive in our language, and they apply equally to phenomena that would be considered physical and geographic as they do to cognitive and social domains. Rather than deriving metaphorically from the physical world to the human, spatial concepts are native to all dimensions of human life. This revised view of the metaphors of space was accompanied by a critical evaluation of the prevailing metaphors for information processes, the conduit and pathway metaphors, which led to the emergence of an alternative, resonance metaphor. Whereas the dominant metaphors emphasized information as object and the movement of objects and people through networks and other limitless information spaces, the resonance metaphor suggests the existence of multiple centers in dynamic proximity relationships. This pointed toward the creation of a space for autonomous problem solving that might be related to other spaces through proximity relationships. It is suggested that a spatial approach involving discrete, discontinuous structures may serve as an alternative to approaches involving movement and transportation. The federation of multiple autonomous problem-solving spaces, toward goals such as establishing communities of questioners, has become an objective of this work. Future work will aim at accomplishing this federation, most likely by means of the IS0 Topic Maps standard or similar semantic networking strategies

    Configurable nD-visualization for complex Building Information Models

    Get PDF
    With the ongoing development of building information modelling (BIM) towards a comprehensive coverage of all construction project information in a semantically explicit way, visual representations became decoupled from the building information models. While traditional construction drawings implicitly contained the visual representation besides the information, nowadays they are generated on the fly, hard-coded in software applications dedicated to other tasks such as analysis, simulation, structural design or communication. Due to the abstract nature of information models and the increasing amount of digital information captured during construction projects, visual representations are essential for humans in order to access the information, to understand it, and to engage with it. At the same time digital media open up the new field of interactive visualizations. The full potential of BIM can only be unlocked with customized task-specific visualizations, with engineers and architects actively involved in the design and development process of these visualizations. The visualizations must be reusable and reliably reproducible during communication processes. Further, to support creative problem solving, it must be possible to modify and refine them. This thesis aims at reconnecting building information models and their visual representations: on a theoretic level, on the level of methods and in terms of tool support. First, the research seeks to improve the knowledge about visualization generation in conjunction with current BIM developments such as the multimodel. The approach is based on the reference model of the visualization pipeline and addresses structural as well as quantitative aspects of the visualization generation. Second, based on the theoretic foundation, a method is derived to construct visual representations from given visualization specifications. To this end, the idea of a domain-specific language (DSL) is employed. Finally, a software prototype proofs the concept. Using the visualization framework, visual representations can be generated from a specific building information model and a specific visualization description.Mit der fortschreitenden Entwicklung des Building Information Modelling (BIM) hin zu einer umfassenden Erfassung aller Bauprojektinformationen in einer semantisch expliziten Weise werden Visualisierungen von den GebĂ€udeinformationen entkoppelt. WĂ€hrend traditionelle Architektur- und Bauzeichnungen die visuellen ReprĂ€Ìˆsentationen implizit als TrĂ€ger der Informationen enthalten, werden sie heute on-the-fly generiert. Die Details ihrer Generierung sind festgeschrieben in Softwareanwendungen, welche eigentlich fĂŒr andere Aufgaben wie Analyse, Simulation, Entwurf oder Kommunikation ausgelegt sind. Angesichts der abstrakten Natur von Informationsmodellen und der steigenden Menge digitaler Informationen, die im Verlauf von Bauprojekten erfasst werden, sind visuelle ReprĂ€sentationen essentiell, um sich die Information erschließen, sie verstehen, durchdringen und mit ihnen arbeiten zu können. Gleichzeitig entwickelt sich durch die digitalen Medien eine neues Feld der interaktiven Visualisierungen. Das volle Potential von BIM kann nur mit angepassten aufgabenspezifischen Visualisierungen erschlossen werden, bei denen Ingenieur*innen und Architekt*innen aktiv in den Entwurf und die Entwicklung dieser Visualisierungen einbezogen werden. Die Visualisierungen mĂŒssen wiederverwendbar sein und in Kommunikationsprozessen zuverlĂ€ssig reproduziert werden können. Außerdem muss es möglich sein, Visualisierungen zu modifizieren und neu zu definieren, um das kreative Problemlösen zu unterstĂŒtzen. Die vorliegende Arbeit zielt darauf ab, GebĂ€udemodelle und ihre visuellen ReprĂ€sentationen wieder zu verbinden: auf der theoretischen Ebene, auf der Ebene der Methoden und hinsichtlich der unterstĂŒtzenden Werkzeuge. Auf der theoretischen Ebene trĂ€gt die Arbeit zunĂ€chst dazu bei, das Wissen um die Erstellung von Visualisierungen im Kontext von Bauprojekten zu erweitern. Der verfolgte Ansatz basiert auf dem Referenzmodell der Visualisierungspipeline und geht dabei sowohl auf strukturelle als auch auf quantitative Aspekte des Visualisierungsprozesses ein. Zweitens wird eine Methode entwickelt, die visuelle ReprĂ€sentationen auf Basis gegebener Visualisierungsspezifikationen generieren kann. Schließlich belegt ein Softwareprototyp die Realisierbarkeit des Konzepts. Mit dem entwickelten Framework können visuelle ReprĂ€sentationen aus jeweils einem spezifischen GebĂ€udemodell und einer spezifischen Visualisierungsbeschreibung generiert werden

    The measurement of occupational identity.

    Get PDF
    SIGLELD:D47094/83 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Eye on Collaborative Creativity : Insights From Multiple-Person Mobile Gaze Tracking in the Context of Collaborative Design

    Get PDF
    Early Career WorkshopNon peer reviewe
    • 

    corecore