264 research outputs found

    A Unification of Ensemble Square Root Kalman Filters

    Get PDF
    In recent years, several ensemble-based Kalman filter algorithms have been developed that have been classified as ensemble square-root Kalman filters. Parallel to this development, the SEIK (Singular ``Evolutive'' Interpolated Kalman) filter has been introduced and applied in several studies. Some publications note that the SEIK filter is an ensemble Kalman filter or even an ensemble square-root Kalman filter. This study examines the relation of the SEIK filter to ensemble square-root filters in detail. It shows that the SEIK filter is indeed an ensemble-square root Kalman filter. Furthermore, a variant of the SEIK filter, the Error Subspace Transform Kalman Filter (ESTKF), is presented that results in identical ensemble transformations to those of the Ensemble Transform Kalman Filter (ETKF) while having a slightly lower computational cost. Numerical experiments are conducted to compare the performance of three filters (SEIK, ETKF, and ESTKF) using deterministic and random ensemble transformations. The results show better performance for the ETKF and ESTKF methods over the SEIK filter as long as this filter is not applied with a symmetric square root. The findings unify the separate developments that have been performed for the SEIK filter and the other ensemble square-root Kalman filters

    A Family of Householder Matrices

    Get PDF
    A Householder transformation, or Householder reflection, or Household matrix, is a reflection about a hyperplane with a unit normal vector. Not only have the Household matrices been used in QR decomposition efficiently but also implicitly and successfully applied in other areas. In the process of investigating a family of unitary filterbanks, a new family of Householder matrices are established. These matrices are produced when a matrix filter is required to preserve certain order of 2d digital polynomial signals. Naturally, they can be applied to image and signal processing among others

    A parameter estimation subroutine package

    Get PDF
    Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. A library of FORTRAN subroutines were developed to facilitate analyses of a variety of estimation problems. An easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage are presented. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses

    A parameter estimation subroutine package

    Get PDF
    Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. FORTRAN subroutines have been developed to facilitate analyses of a variety of parameter estimation problems. Easy to use multipurpose sets of algorithms are reported that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used

    Multitarget tracking and terrain-aided navigation using square-root consider filters

    Get PDF
    Filtering is a term used to describe methods that estimate the values of partially observed states, such as the position, velocity, and attitude of a vehicle, using current observations that are corrupted due to various sources, such as measurement noise, transmission dropouts, and spurious information. The study of filtering has been an active focus of research for decades, and the resulting filters have been the cornerstone of many of humankind\u27s greatest technological achievements. However, these achievements are enabled principally by the use of specialized techniques that seek to, in some way, combat the negative impacts that processor roundoff and truncation error have on filtering. Two of these specialized techniques are known as square-root filters and consider filters. The former alleviates the fragility induced from estimating error covariance matrices by, instead, managing a factorized representation of that matrix, known as a square-root factor. The latter chooses to account for the statistical impacts a troublesome system parameter has on the overall state estimate without directly estimating it, and the result is a substantial reduction in numerical sensitivity to errors in that parameter. While both of these techniques have found widespread use in practical application, they have never been unified in a common square-root consider framework. Furthermore, consider filters are historically rooted to standard, vector-valued estimation techniques, and they have yet to be generalized to the emerging, set-valued estimation tools for multitarget tracking. In this dissertation, formulae for the square-root consider filter are derived, and the result is extended to finite set statistics-based multitarget tracking tools. These results are used to propose a terrain-aided navigation concept wherein data regarding a vehicle\u27s environment is used to improve its state estimate, and square-root consider techniques provide the numerical stability necessary for an onboard navigation application. The newly developed square-root consider techniques are shown to be much more stable than standard formulations, and the terrain-aided navigation concept is applied to a lunar landing scenario to illustrate its applicability to navigating in challenging environments --Abstract, page iii

    ARdock

    Get PDF
    ARdock: an auto-regressive model analyzer\nARdock packge concerns model fitting and interpretation of the linear multivariate time series and system. The complete ARdock package is composed of a printable monograph, ardock.dvi, that contains all the necessary mathematical formulas; a source file, ardock.F, that contains all the necessary computational routines; and a few subsidiary files. A model, E-MARTS model is proposed for the purpose of system analysis. Model fitting is performed by the least squares method via Householder transformation and the numerical maximization of the log likelihood whose calculation is realized by applying the Kalman filtering technique. This package is so designed that it can readily be used by the users interested in analyzing their own data, and also serves as a bank of subroutines for the general use by statistical model builders.ARdock package Latest news: 2. ardock.F version v.1 is replaced by version v.2. Related patch files ardock.0-2.patch and ardock.1-2.patch are added. Those who has old versions can update his/hers by applying the ardock.0-2.patch to the original ardock.F or ardock.1-2.patch to the version v.1 obtained by applying ardock.0-1.patch to the original ardock.F (2000.11.21 M. Ishiguro) --------- 1. ardock.F is replaced by a revised version. Related patch file ardock.0-1.patch file is added. This revision is to remove a bug. Read first parts of ardock.F and ardock.0-1.patch for the detail. Those who has the original version can update his/hers using the patch file. (2000.11.10 M. Ishiguro) ------------------\n[Compilation] The object file is obtained by the following procedure: 1. If necessary, set appropriate values to parameters summarized in the following Tables 4a, 4b and 4c. 2. Define appropriate parameters for C pre-processor summarized in Table 4d. 3. Apply C pre-processor. 4. Compile by a FORTRAN compiler * In Unix environment, Steps 3 and 4 are performed by simply executing make command, in the directry where three files \u27ardock.F\u27, \u27ardock.env\u27 and \u27Makefile\u27 are placed. Then you will get the executable file ardock

    Methods for assimilating remotelysensed water storage changes into hydrological models

    Get PDF
    Understanding physical processes within the water cycle is a challenging issue that requires merging information from various disciplines. The Gravity Recovery And Climate Experiment (GRACE) mission provides a unique opportunity to measure time-variable gravity fields, which can be converted to global total water storage anomalies (TWSA). These observations represent a vertical integral of all individual water compartments, which is difficult to observe by in-situ or other remote-sensing techniques. Knowledge about interactions between hydrological fluxes and terrestrial water storage compartments is reflected in large-scale hydrological models that nowadays increase in complexity to simulate all relevant physical processes within the global water cycle. Hydrological models are driven by climate forcing fields and their parameters are usually calibrated against river discharge to ensure a realistic water balance on river basin scale. However, errors in climate forcing fields, model parameters, and model structure limit the reliability of hydrological models. Therefore, it is necessary to improve model simulations by introducing measurements, which is known as data assimilation or data-model fusion. In this thesis, a novel calibration and data assimilation (C/DA) framework is developed to merge remotely-sensed large scale TWSA with hydrological models. To implement this framework, the WaterGAP Global Hydrology Model (WGHM) is chosen, which is a sophisticated 0.5°x0.5° conceptual model that simulates daily water changes in surface and sub-surface water compartments (including groundwater), and considers water consumption. In particular, a flexible approach is introduced to assimilate GRACE TWSA as (sub-)basin or gridded averages into WGHM, while for the first time, implementing the observation error correlations in the C/DA system. A sensitivity analysis is performed to identify significant parameters in the largest river basins world-wide. It is also investigated whether GRACE TWSA can be used to calibrate model parameters. To reduce sampling errors and to improve the computational efficiency, the classical ensemble Kalman filter (EnKF) technique is extended to a square root analysis (SQRA) scheme, and the singular evolutive interpolated Kalman (SEIK) filter. The relationships between these algorithms are addressed. A simple model and WGHM are used to describe the mathematical details of the data assimilation techniques. The observation error model, spatial resolution of observations, choice of filtering algorithm, and model ensemble size are assessed within a realistic synthetic experiment designed for the Mississippi River Basin, USA. Real GRACE products are also integrated into WGHM over this region. Investigations indicate that introducing GRACE TWSA constrains the water balance equation and corrects for insufficiently known climate forcing, in particular precipitation. Individual water states and fluxes are also adjusted but more improvements are expected by assimilating further in-situ and remotely-sensed observations. The processing choices represent important impacts on the final results. The C/DA framework is transferred to the Murray-Darling River Basin, Australia, to improve the simulation of hydrological changes under a long-term drought condition. GRACE C/DA introduces a negative trend to WGHM simulated TWSA. A validation with in-situ groundwater measurements indicates that the trend is correctly associated with the groundwater compartment. Thus, the C/DA helps to identify deficits in model simulations and improves the understanding of hydrological processes. The promising results provide a first step towards more complex C/DA applications on global scale and in conjunction with further terrestrial water storage observations.Methoden zur Assimilierung von satelliten-basierten Wasserspeicheränderungen in hydrologische Modelle Zum Verständnis der physikalischen Prozesse des Wasserkreislaufes ist das Zusammenführen von Kenntnissen verschiedener Disziplinen erforderlich. Die Messungen zeitabhängiger Gravitationsfelder der Gravity Recovery And Climate Experiment (GRACE) Satellitenmission liefern einzigartige Erkenntnisse über globale Gesamtwasserspeicher-änderungen (GWSA). Diese Größe repräsentiert die Summe aller einzelnen Wasserspeicherkomponenten, welche nur unzulänglich durch lokale oder andere satellitengestützte Verfahren beobachtet werden kann. Großskalige hydrologische Modelle simulieren Interaktionen zwischen terrestrischen Wasserspeicherkomponenten. Ihre Komplexität steigt heutzutage immer weiter, um alle relevanten physikalischen Prozesse im globalen Wasserkreislauf abzubilden. Sie werden durch Klimadaten angetrieben und durch Modellparameter gesteuert. Zur Gewährleistung einer realistischen Wasserbilanz in Flusseinzugsgebieten werden letztere üblicherweise gegen Durchflussmessungen kalibriert. Dennoch limitieren Unsicherheiten in den Klimadaten, in den Modellparametern und in der Modellstruktur die Zuverlässigkeit hydrologischer Prädiktionen. Um Simulationen zu verbessern ist daher die Integration von Beobachtungsdaten notwendig, welches unter dem Begriff der Datenassimilierung bekannt ist. In dieser Arbeit wird ein neuer Kalibrierungs- und Datenassimilierungsansatz (K/DA) zur Kombination von großskalig beobachteten GWSA und hydrologischen Modellen am Beispiel des WaterGAP Global Hydrology Model (WGHM) entwickelt. WGHM ist ein konzeptionelles Wasserbilanzmodell, das tägliche Wasseränderungen auf und im Boden (inklusive Grundwasser) auf einer räumlichen Skala von 0,5°x0,5° berechnet und anthropogene Wasserentnahmen berücksichtigt. Insbesondere wird ein flexibler Ansatz zur Integration gegitterter und räumlich gemittelter GWSA eingeführt, während die Korrelationen der Beobachtungsfehler zum ersten Mal in der Assimilierung berücksichtigt werden. Eine Sensitivitätsanalyse identifiziert maßgebliche Parameter für die weltweit größten Flusseinzugsgebiete. Es wird außerdem untersucht, ob GRACE-GWSA zur Parameter-kalibrierung herangezogen werden können. Um Stichprobenfehler zu reduzieren und um die rechnerische Effizienz zu steigern, wird die klassische Ensemble Kalman Filter (EnKF) Methode um das Square Root Analysis (SQRA) Schema und den Singular Evolutive Interpolated Kalman (SEIK) Filter erweitert. Die Zusammenhänge dieser Algorithmen werden dargestellt. Die mathematischen Details der Methoden werden anhand eines einfachen Modells und des WGHM beschrieben. Das Modell der Beobachtungsfehler, die Auflösung der Beobachtungen, die Auswahl der Filteralgorithmen und die Größe des Modellensembles werden in einem realistischen synthetischen Experiment für das Flusseinzugsgebiet des Mississippis (USA) analysiert. GRACE-GWSA werden ebenfalls für dieser Region in das WGHM integriert. Untersuchungen zeigen, dass die Wasserbilanz an die Daten angepasst wird und ungenaue Klimadaten, insbesondere Niederschlag, ausgeglichen werden. Wasserspeicher-komponenten werden ebenfalls angepasst, würden aber durch die Assimilierung weiterer lokaler und satellitengestützter Daten profitieren. Der K/DA Ansatz hat einen entscheidenden Einfluss auf die Ergebnisse. Der entwickelte Ansatz wird auf das Einzugsgebiet des Murray und Darling Flusses (Australien) übertragen, um die Simulation hydrologischer Änderungen während einer Trockenperiode zu verbessern. GRACE-K/DA führt einen negativen Trend in das Modell ein. Die Validierung mit lokalen Grundwasserdaten bestätigt, dass der Trend korrekt mit dem Grundwasserspeicher assoziiert wird. Die K/DA ermöglicht somit Defizite in Modellsimulationen zu identifizieren und verbessert das Verständnis hydrologischer Prozesse. Die vielversprechenden Ergebnisse bereiten einen ersten Schritt in Richtung globaler K/DA in Verbindung mit weiteren hydrologischen Beobachtungen
    corecore