4,440 research outputs found

    Automatic translation from FBD-PLC-programs to NuSMV for model checking safety-critical control systems

    Get PDF
    Programmable logic controllers (PLCs) are digital control systems, commonly used in industrial automation and safety-critical applications. Control systems used in safety-critical areas must undergo an extensive and thorough certification and verification process. In safety-critical applications, the PLC programming standard IEC 61131-3 is widely accepted in industry. PLC programmers who develop control systems for safety-critical systems are often required to verify the logic of PLCs by using formal methods such as model checking. Translating manually from a PLC program to the input language of a model checker takes times and is often error-prone. We develop a compiler to automatically translate PLC programs in the function block diagram (FBD) language, one of five industry standard PLC programming notations, to the input language of the model checker NuSMV. We have evaluated correctness, robustness, and performance of the PLC-NuSMV compiler using a case study. Evaluation results show that the compiler can translate the PLC programs correctly. The compiler can also identify several input errors and can scale to relative large PLC programs

    A Control Flow based Static Analysis of GRAFCET using Abstract Interpretation

    Full text link
    The graphical modeling language GRAFCET is used as a formal specification language in industrial control design. This paper proposes a static analysis approach based on the control flow of GRAFCET using abstract interpretation to allow verification on specification level. GRAFCET has different elements leading to concurrent behavior, which in general results in a large state space. To get precise results and reduce the state space, we propose an analysis suitable for GRAFCET instances without concurrent behavior. We point out how to check for the absence of concurrency and present a flow-sensitive analysis for these GRAFCET instances. The proposed approach is evaluated on an industrial-sized example.Comment: \c{opyright} 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Structural Synthesis for GXW Specifications

    Full text link
    We define the GXW fragment of linear temporal logic (LTL) as the basis for synthesizing embedded control software for safety-critical applications. Since GXW includes the use of a weak-until operator we are able to specify a number of diverse programmable logic control (PLC) problems, which we have compiled from industrial training sets. For GXW controller specifications, we develop a novel approach for synthesizing a set of synchronously communicating actor-based controllers. This synthesis algorithm proceeds by means of recursing over the structure of GXW specifications, and generates a set of dedicated and synchronously communicating sub-controllers according to the formula structure. In a subsequent step, 2QBF constraint solving identifies and tries to resolve potential conflicts between individual GXW specifications. This structural approach to GXW synthesis supports traceability between requirements and the generated control code as mandated by certification regimes for safety-critical software. Synthesis for GXW specifications is in PSPACE compared to 2EXPTIME-completeness of full-fledged LTL synthesis. Indeed our experimental results suggest that GXW synthesis scales well to industrial-sized control synthesis problems with 20 input and output ports and beyond.Comment: The long (including appendix) version being reviewed by CAV'16 program committee. Compared to the submitted version, one author (out of her wish) is moved to the Acknowledgement. (v2) Corrected typos. (v3) Add an additional remark over environment assumption and easy corner case

    Verification of fault tolerant safety I&C systems using model checking

    Get PDF
    • …
    corecore