84 research outputs found

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    A framework for achieving the required degree of multitenancy isolation for deploying components of a cloud-hosted service.

    Get PDF
    Multitenancy allows multiple tenants to access a single instance of a cloud offering. While several approaches exist for implementing multitenancy, little attention has been paid to implementing the required degree of isolation since there are varying degrees of isolation that can be implemented for each tenant. This paper presents a framework for achieving the required degree of isolation between tenants accessing a cloud offering so that the required performance, resource utilisation and access privilege of one tenant does not affect other tenants when there are workload changes. The framework is composed of two main constituents: 1) component-based approach to multitenancy isolation through request re-routing (COMITRE); 2) an optimisation model for providing optimal solutions for deploying components of a cloud-hosted service. We demonstrate using a case study of: 1) a cloud-hosted bug tracking system; 2) a synthetic dataset, the possibility of providing the required degree of isolation and optimal deployment solutions

    Move Acceptance in Local Search Metaheuristics for Cross-domain Heuristic Search

    Get PDF
    Many real-world combinatorial optimisation problems (COPs) are computationally hard problems and search methods are frequently preferred as solution techniques. Traditionally, an expert with domain knowledge designs, and tailors the search method for solving a particular COP. This process is usually expensive, requiring a lot of effort and time and often results in problem specific algorithms that can not be applied to another COP. Then, the domain expert either needs to design a new search method, or reconfigure an existing search method to solve that COP. This prompted interest into developing more general, problem-domain-independent high-level search methods that can be re-used, capable of solving not just a single problem but multiple COPs. The cross-domain search problem is a relatively new concept and represents a high-level issue that involves designing a single solution method for solving a multitude of COPs preferably with the least or no expert intervention. Cross-domain search methods are algorithms designed to tackle the cross-domain search problem. Such methods are of interest to researchers and practitioners worldwide as they offer a single off-the-shelf go-to approach to problem solving. Furthermore, if a cross-domain search method has a good performance, then it can be expected to solve `any' given COP well and in a reasonable time frame. When a practitioner is tasked with solving a new or unknown COP, they are tasked with a decision-making dilemma. This entails the decision of what algorithm they should use, what parameters should be used for that algorithm, and whether any other algorithm can outperform it. A well designed cross-domain search method that performs well and does not require re-tuning can fulfil this dilemma allowing practitioners to find good-enough solutions to such problems. Researchers on the other hand strive to find high-quality solutions to these problems; however, such a cross-domain search method provides them with a good benchmark to which they can compare their solution methods to, and should ultimately aim to outperform. In this work, move acceptance methods, which are a component of traditional search methods, such as metaheuristics and hyper-heuristics, are explored under a cross-domain search framework. A survey of the existing move acceptance methods as a part of local search metaheuristics is conducted based on the hyper-heuristic literature as solution methods to the cross-domain search problem. Furthermore, a taxonomy is provided for classifying them based on their design characteristics. The cross-domain performance of existing move acceptance methods, covering the taxonomy, is compared across a total of 45 problem instances spanning 9 problem domains, and the effects of parameter tuning versus choice of the move acceptance method are explored. A novel move acceptance method (HAMSTA) is proposed to overcome the shortcomings of the existing methods to improve the cross-domain performance of a local search metaheuristic. HAMSTA is capable of outperforming the cross-domain performances of existing methods that are re-tuned for each domain, despite itself using only a single cross-domain parameter configuration derived from tuning experiments that considers 2 instances each from 4 domains; hence, HAMSTA requires no expert intervention to re-configure it to perform well for solving multiple COPs with 37 problem instances unseen by HAMSTA, 25 of which are from unseen domains. HAMSTA is therefore shown to have the potential to fulfil the aforementioned decision-making dilemma

    Service scheduling and vehicle routing problem to minimise the risk of missing appointments

    Get PDF
    This research studies a workforce scheduling and vehicle routing problem where technicians drive a vehicle to customer locations to perform service tasks. The service times and travel times are subject to stochastic events. There is an agreed time window for starting each service task. The risk of missing the time window for a task is defined as the probability that the technician assigned to the task arrives at the customer site later than the time window. The problem is to generate a schedule that minimises the maximum of risks and the sum of risks of all the tasks considering the effect of skill levels and task priorities. A new approach is taken to build schedules that minimise the risks of missing appointments as well as the risks of technicians not being able to complete their daily tours on time.We first analyse the probability distribution of the arrival time to any customer location considering the distributions of activities prior to this arrival. Based on the analysis, an efficient estimation method for calculating the risks is proposed, which is highly accurate and this is verified by comparing the results of the estimation method with a numerical integral method.We then develop three new workforce scheduling and vehicle routing models that minimise the risks with different considerations such as an identical standard deviation of the duration for all uncertain tasks in the linear risk minimisation model, and task priorities in the priority task risk minimisation model. A simulated annealing algorithm is implemented for solving the models at the start of the day and for re-optimisation during the day. Computational experiments are carried out to compare the results of the risk minimisation models with those of the traditional travel cost model. The performance is measured using risks and robustness. Simulation is used to compare the numbers of missed appointments and test the effect of re-optimisation.The results of the experiments demonstrate that the new models significantly reduce the risks and generate schedules with more contingency time allowances. Simulation results also show that re-optimisation reduces the number of missed appointments significantly. The risk calculation methods and risk minimisation algorithm are applied to a real-world problem in the telecommunication sector.</div

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes
    corecore