20,850 research outputs found

    A new tool for the evaluation of the rehabilitation outcomes in older persons. a machine learning model to predict functional status 1 year ahead

    Get PDF
    Purpose To date, the assessment of disability in older people is obtained utilizing a Comprehensive Geriatric Assessment (CGA). However, it is often difficult to understand which areas of CGA are most predictive of the disability. The aim of this study is to evaluate the possibility to early predict—1year ahead—the disability level of a patient using machine leaning models. Methods Community-dwelling older people were enrolled in this study. CGA was made at baseline and at 1year follow-up. After collecting input/independent variables (i.e., age, gender, schooling followed, body mass index, information on smoking, polypharmacy, functional status, cognitive performance, depression, nutritional status), we performed two distinct Support Vector Machine models (SVMs) able to predict functional status 1year ahead. To validate the choice of the model, the results achieved with the SVMs were compared with the output produced by simple linear regression models. Results 218 patients (mean age = 78.01; SD = 7.85; male = 39%) were recruited. The combination of the two SVMs is able to achieve a higher prediction accuracy (exceeding 80% instances correctly classified vs 67% instances correctly classified by the combination of the two linear regression models). Furthermore, SVMs are able to classify both the three categories, self sufficiently, disability risk and disability, while linear regression model separates the population only in two groups (self-sufficiency and disability) without identifying the intermediate category (disability risk) which turns out to be the most critical one. Conclusions The development of such a model can contribute to the early detection of patients at risk of self-sufficiency loss

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Development and Validation of eRADAR: A Tool Using EHR Data to Detect Unrecognized Dementia.

    Get PDF
    ObjectivesEarly recognition of dementia would allow patients and their families to receive care earlier in the disease process, potentially improving care management and patient outcomes, yet nearly half of patients with dementia are undiagnosed. Our aim was to develop and validate an electronic health record (EHR)-based tool to help detect patients with unrecognized dementia (EHR Risk of Alzheimer's and Dementia Assessment Rule [eRADAR]).DesignRetrospective cohort study.SettingKaiser Permanente Washington (KPWA), an integrated healthcare delivery system.ParticipantsA total of 16 665 visits among 4330 participants in the Adult Changes in Thought (ACT) study, who undergo a comprehensive process to detect and diagnose dementia every 2 years and have linked KPWA EHR data, divided into development (70%) and validation (30%) samples.MeasurementsEHR predictors included demographics, medical diagnoses, vital signs, healthcare utilization, and medications within the previous 2 years. Unrecognized dementia was defined as detection in ACT before documentation in the KPWA EHR (ie, lack of dementia or memory loss diagnosis codes or dementia medication fills).ResultsOverall, 1015 ACT visits resulted in a diagnosis of incident dementia, of which 498 (49%) were unrecognized in the KPWA EHR. The final 31-predictor model included markers of dementia-related symptoms (eg, psychosis diagnoses, antidepressant fills), healthcare utilization pattern (eg, emergency department visits), and dementia risk factors (eg, cerebrovascular disease, diabetes). Discrimination was good in the development (C statistic = .78; 95% confidence interval [CI] = .76-.81) and validation (C statistic = .81; 95% CI = .78-.84) samples, and calibration was good based on plots of predicted vs observed risk. If patients with scores in the top 5% were flagged for additional evaluation, we estimate that 1 in 6 would have dementia.ConclusionThe eRADAR tool uses existing EHR data to detect patients with good accuracy who may have unrecognized dementia. J Am Geriatr Soc 68:103-111, 2019

    Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults

    Get PDF
    As global demographics change, ageing is a global phenomenon which is increasingly of interest in our modern and rapidly changing society. Thus, the application of proper prognostic indices in clinical decisions regarding mortality prediction has assumed a significant importance for personalized risk management (i.e., identifying patients who are at high or low risk of death) and to help ensure effective healthcare services to patients. Consequently, prognostic modelling expressed as all‐cause mortality prediction is an important step for effective patient management. Machine learning has the potential to transform prognostic modelling. In this paper, results on the development of machine learning models for all‐cause mortality prediction in a cohort of healthy older adults are reported. The models are based on features covering anthropometric variables, physical and lab examinations, questionnaires, and lifestyles, as well as wearable data collected in free‐living settings, obtained for the “Healthy Ageing Initiative” study conducted on 2291 recruited participants. Several machine learning techniques including feature engineering, feature selection, data augmentation and resampling were investigated for this purpose. A detailed empirical comparison of the impact of the different techniques is presented and discussed. The achieved performances were also compared with a standard epidemiological model. This investigation showed that, for the dataset under consideration, the best results were achieved with Random Under‐ Sampling in conjunction with Random Forest (either with or without probability calibration). However, while including probability calibration slightly reduced the average performance, it increased the model robustness, as indicated by the lower 95% confidence intervals. The analysis showed that machine learning models could provide comparable results to standard epidemiological models while being completely data‐driven and disease‐agnostic, thus demonstrating the opportunity for building machine learning models on health records data for research and clinical practice. However, further testing is required to significantly improve the model performance and its robustness

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Prognosis Prediction Models and their Clinical Utility in Palliative Care

    Get PDF
    Prognosis prediction is a clinically relevant issue to facilitate optimal decision-making for both physicians and patients with cancer. Many previous studies revealed that prognosis prediction based on the physician’s intuition and/or clinical experience is inaccurate and often optimistic, which means that there is a tendency to overestimate patient survival in daily clinical practice. In recent decades, many efforts have been made to develop prognosis prediction models which aid physicians to make more accurate prognosis prediction. In this chapter, we review the representative prognosis prediction models in palliative care and related studies. In addition, we refer to several prognosis prediction models developed by unique methods (for instance, case-crossover design or machine learning). Finally, we focus on the possible clinical utility of prognosis prediction models. In fact, no previous studies have clearly demonstrated whether the application of such prognosis prediction models truly benefits patient care in daily clinical practice. Therefore, we will discuss how the application of prognosis prediction models could benefit patients under palliative care

    Addressing data accuracy and information integrity in mHealth using ML

    Full text link
    The aim of the study was finding a way in which Machine Learning can be applied in mHealth Solutions to detect inaccurate data that can potentially harm patients. The result was an algorithm that classified accurate and inaccurate data

    An Overview of Human Activity Recognition Using Wearable Sensors: Healthcare and Artificial Intelligence

    Full text link
    With the rapid development of the internet of things (IoT) and artificial intelligence (AI) technologies, human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment. Even though a number of surveys and review papers have been published, there is a lack of HAR overview papers focusing on healthcare applications that use wearable sensors. Therefore, we fill in the gap by presenting this overview paper. In particular, we present our projects to illustrate the system design of HAR applications for healthcare. Our projects include early mobility identification of human activities for intensive care unit (ICU) patients and gait analysis of Duchenne muscular dystrophy (DMD) patients. We cover essential components of designing HAR systems including sensor factors (e.g., type, number, and placement location), AI model selection (e.g., classical machine learning models versus deep learning models), and feature engineering. In addition, we highlight the challenges of such healthcare-oriented HAR systems and propose several research opportunities for both the medical and the computer science community
    corecore