499 research outputs found

    Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing systems. The methodology applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. Recent work on modelling applications from the healthcare domain is reported. One objective of this work is to explore and elaborate the proposed methodology. At the University of Twente we are developing m-health systems based on Body Area Networks (BANs). One specialization of the generic BAN is the health BAN, which incorporates a set of devices and associated software components to provide some set of health-related services. A patient will have a personalized instance of the health BAN customized to their current set of needs. A health professional interacts with their\ud patientsÂż BANs via a BAN Professional System. The set of deployed BANs are supported by a server. We refer to this distributed system as the BAN System. The BAN system extends the enterprise computing system of the healthcare provider. Development of such systems requires a sound software engineering approach and this is what we explore with the new methodology. The methodology is illustrated with reference to recent modelling activities targeted at real implementations. In the context of the Awareness project BAN implementations will be trialled in a number of clinical settings including epilepsy management and management of chronic pain

    Model Driven Development of m-Health Systems (with a Touch of Formality)

    Get PDF
    We propose a model driven design and development methodology augmented with formal validation and verification (V&V) for the development of mobile health systems. Systems which deliver healthcare services remotely should be developed using robust and trusted engineering technologies. The methodology instantiates steps in the MDA trajectory using formal methods to verify critical properties of models, to test preservation of those properties in the derived implementations and to effect model transformations by correctness preserving transformations. The methodology is described and some initial modelling is reported

    An application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a methodology for the development of such extended enterprise computing systems which applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. At the University of Twente we develop context aware m-health systems based on Body Area Networks (BANs). A set of deployed BANs are supported by a server. We refer to this distributed system as a BAN System. Development of such distributed m-health systems requires a sound software engineering approach and this is what we target with the proposed methodology. The methodology is illustrated with reference to modelling activities targeted at real implementations. BAN implementations are being trialled in a number of clinical settings including epilepsy management and management of chronic pain

    A service-oriented cloud modeling method and process

    Get PDF
    The transition of software development from web to cloud has been accelerated. The development of cloud services requires a modeling method that reflects the characteristics of cloud including personalized service, resource sharing service, grouped and distributed services, and cross-platform operability. This study aimed to suggest a method of developing UML-based cloud services suitable for the characteristics of cloud services. A cloud service metamodel was defined using cloud applications’ characteristic modeling elements, and after that, how these cloud modeling elements are expressed into UML modeling elements was defined with an integrated metamodel between cloud and UML. By applying this hierarchical cloud metamodel, an MDA and MVC-based service-oriented cloud modeling process was established. By doing so, it will be possible to easily design services (applications) and solutions that are suitable for cloud computing environments, and in particular, to create hierarchical reuse models by the level of the abstraction of model-driven development

    Interoperability of Enterprise Software and Applications

    Get PDF

    UML-SOA-Sec and Saleem's MDS Services Composition Framework for Secure Business Process Modelling of Services Oriented Applications

    Get PDF
    In Service Oriented Architecture (SOA) environment, a software application is a composition of services, which are scattered across enterprises and architectures. Security plays a vital role during the design, development and operation of SOA applications. However, analysis of today's software development approaches reveals that the engineering of security into the system design is often neglected. Security is incorporated in an ad-hoc manner or integrated during the applications development phase or administration phase or out sourced. SOA security is cross-domain and all of the required information is not available at downstream phases. The post-hoc, low-level integration of security has a negative impact on the resulting SOA applications. General purpose modeling languages like Unified Modeling Language (UML) are used for designing the software system; however, these languages lack the knowledge of the specific domain and "security" is one of the essential domains. A Domain Specific Language (DSL), named the "UML-SOA-Sec" is proposed to facilitate the modeling of security objectives along the business process modeling of SOA applications. Furthermore, Saleem's MDS (Model Driven Security) services composition framework is proposed for the development of a secure web service composition
    • …
    corecore