66,009 research outputs found

    Modeling good research practices - overview: a report of the ISPOR-SMDM modeling good research practices task force - 1.

    Get PDF
    Models—mathematical frameworks that facilitate estimation of the consequences of health care decisions—have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR modeling task force reported in 2003 has led to a new task force, jointly convened with the Society for Medical Decision Making, and this series of seven papers presents the updated recommendations for best practices in conceptualizing models; implementing state–transition approaches, discrete event simulations, or dynamic transmission models; dealing with uncertainty; and validating and reporting models transparently. This overview introduces the work of the task force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these papers includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making

    Aging concrete structures: a review of mechanics and concepts

    Get PDF
    The safe and cost-efficient management of our built infrastructure is a challenging task considering the expected service life of at least 50 years. In spite of time-dependent changes in material properties, deterioration processes and changing demand by society, the structures need to satisfy many technical requirements related to serviceability, durability, sustainability and bearing capacity. This review paper summarizes the challenges associated with the safe design and maintenance of aging concrete structures and gives an overview of some concepts and approaches that are being developed to address these challenges

    Event tracking for real-time unaware sensitivity analysis (EventTracker)

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper introduces a platform for online Sensitivity Analysis (SA) that is applicable in large scale real-time data acquisition (DAQ) systems. Here we use the term real-time in the context of a system that has to respond to externally generated input stimuli within a finite and specified period. Complex industrial systems such as manufacturing, healthcare, transport, and finance require high quality information on which to base timely responses to events occurring in their volatile environments. The motivation for the proposed EventTracker platform is the assumption that modern industrial systems are able to capture data in real-time and have the necessary technological flexibility to adjust to changing system requirements. The flexibility to adapt can only be assured if data is succinctly interpreted and translated into corrective actions in a timely manner. An important factor that facilitates data interpretation and information modelling is an appreciation of the affect system inputs have on each output at the time of occurrence. Many existing sensitivity analysis methods appear to hamper efficient and timely analysis due to a reliance on historical data, or sluggishness in providing a timely solution that would be of use in real-time applications. This inefficiency is further compounded by computational limitations and the complexity of some existing models. In dealing with real-time event driven systems, the underpinning logic of the proposed method is based on the assumption that in the vast majority of cases changes in input variables will trigger events. Every single or combination of events could subsequently result in a change to the system state. The proposed event tracking sensitivity analysis method describes variables and the system state as a collection of events. The higher the numeric occurrence of an input variable at the trigger level during an event monitoring interval, the greater is its impact on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis method with a comparable method (that of Entropy). An improvement of 10% in computational efficiency without loss in accuracy was observed. The comparison also showed that the time taken to perform the sensitivity analysis was 0.5% of that required when using the comparable Entropy based method.EPSR

    A COVID-19 Recovery Strategy Based on the Health System Capacity Modeling. Implications on Citizen Self-management

    Get PDF
    Versión preprint depositada sin articulo publicado dada la actualidad del tema. *Solicitud de los autoresConfinement ends, and recovery phase should be accurate planned. Health System (HS) capacity, specially ICUs and plants capacity and availability, will remain the key stone in this new Covid-19 pandemic life cycle phase. Until massive vaccination programs will be a real option (vaccine developed, world wield production capacity and effective and efficient administration process), date that will mark recovery phase end, important decisions should be taken. Not only by authorities. Citizen self-management and organizations self-management will be crucial. This means: citizen and organizations day a day decision in order to control their own risks (infecting others and being infected). This paper proposes a management tool that is based on a ICUs and plants capacity model. Principal outputs of this tool are, by sequential order and by last best data available: (i) ICUs and plants saturation estimation data (according to incoming rate of patients), (ii) with this results new local and temporal confinement measure can be planned and also a dynamic analysis can be done to estimate maximum Ro saturation scenarios, and finally (iii) provide citizen with clear and accurate data allow them adapting their behavior to authorities’ previous recommendations. One common objective: to accelerate as much as possible socioeconomic normalization with a strict control over HS relapses risk

    Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening

    Get PDF
    Markov models are often used to evaluate the cost-effectiveness of new healthcare interventions but they are sometimes not flexible enough to allow accurate modeling or investigation of alternative scenarios and policies. A Markov model previously demonstrated that a one-off invitation to screening for abdominal aortic aneurysm (AAA) for men aged 65 y in the UK and subsequent follow-up of identified AAAs was likely to be highly cost-effective at thresholds commonly adopted in the UK (ÂŁ20,000 to ÂŁ30,000 per quality adjusted life-year). However, new evidence has emerged and the decision problem has evolved to include exploration of the circumstances under which AAA screening may be cost-effective, which the Markov model is not easily able to address. A new model to handle this more complex decision problem was needed, and the case of AAA screening thus provides an illustration of the relative merits of Markov models and discrete event simulation (DES) models. An individual-level DES model was built using the R programming language to reflect possible events and pathways of individuals invited to screening v. those not invited. The model was validated against key events and cost-effectiveness, as observed in a large, randomized trial. Different screening protocol scenarios were investigated to demonstrate the flexibility of the DES. The case of AAA screening highlights the benefits of DES, particularly in the context of screening studies

    Economic evaluation using decision analytical modelling : design, conduct, analysis, and reporting

    Get PDF
    Economic evaluations are increasingly conducted alongside randomised controlled trials, providing researchers with individual patient data to estimate cost effectiveness. However, randomised trials do not always provide a sufficient basis for economic evaluations used to inform regulatory and reimbursement decisions. For example, a single trial might not compare all the available options, provide evidence on all relevant inputs, or be conducted over a long enough time to capture differences in economic outcomes (or even measure those outcomes). In addition, reliance on a single trial may mean ignoring evidence from other trials, meta-analyses, and observational studies. Under these circumstances, decision analytical modelling provides an alternative framework for economic evaluation. Decision analytical modelling compares the expected costs and consequences of decision options by synthesising information from multiple sources and applying mathematical techniques, usually with computer software. The aim is to provide decision makers with the best available evidence to reach a decision—for example, should a new drug be adopted? Following on from our article on trial based economic evaluations, we outline issues relating to the design, conduct, analysis, and reporting of economic evaluations using decision analytical modelling

    Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness

    Get PDF
    The choice of model design for decision analytic models in cost-effectiveness analysis has been the subject of discussion. The current work addresses this issue by noting that, when time is to be explicitly modelled, we need to represent phenomena occurring in continuous time. Multistate models evaluated in continuous time might be used but closed form solutions of expected time in each state may not exist or may be difficult to obtain. Two approximations can then be used for costeffectiveness estimation: (1) simulation models, where continuous time estimates are obtained through Monte Carlo simulation, and (2) discretized models. This work draws recommendations on their use by showing that, when these alternative models can be applied, it is preferable to implement a cohort discretized model than a simulation model. Whilst the bias from the first can be minimized by reducing the cycle length, the second is inherently stochastic. Even though specialized literature advocates this framework, the current practice in economic evaluation is to define clinically meaningful cycle lengths for discretized models, disregarding potential biases.

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979
    • …
    corecore