1,006 research outputs found

    Applying Length-Dependent Stochastic Context-Free Grammars to RNA Secondary Structure Prediction

    Get PDF
    Weinberg F, Nebel M. Applying Length-Dependent Stochastic Context-Free Grammars to RNA Secondary Structure Prediction. Algorithms. 2011;4(4):223--238

    Parametrized Stochastic Grammars for RNA Secondary Structure Prediction

    Full text link
    We propose a two-level stochastic context-free grammar (SCFG) architecture for parametrized stochastic modeling of a family of RNA sequences, including their secondary structure. A stochastic model of this type can be used for maximum a posteriori estimation of the secondary structure of any new sequence in the family. The proposed SCFG architecture models RNA subsequences comprising paired bases as stochastically weighted Dyck-language words, i.e., as weighted balanced-parenthesis expressions. The length of each run of unpaired bases, forming a loop or a bulge, is taken to have a phase-type distribution: that of the hitting time in a finite-state Markov chain. Without loss of generality, each such Markov chain can be taken to have a bounded complexity. The scheme yields an overall family SCFG with a manageable number of parameters.Comment: 5 pages, submitted to the 2007 Information Theory and Applications Workshop (ITA 2007

    A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots

    Get PDF
    This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms

    Structural Alignment of RNAs Using Profile-csHMMs and Its Application to RNA Homology Search: Overview and New Results

    Get PDF
    Systematic research on noncoding RNAs (ncRNAs) has revealed that many ncRNAs are actively involved in various biological networks. Therefore, in order to fully understand the mechanisms of these networks, it is crucial to understand the roles of ncRNAs. Unfortunately, the annotation of ncRNA genes that give rise to functional RNA molecules has begun only recently, and it is far from being complete. Considering the huge amount of genome sequence data, we need efficient computational methods for finding ncRNA genes. One effective way of finding ncRNA genes is to look for regions that are similar to known ncRNA genes. As many ncRNAs have well-conserved secondary structures, we need statistical models that can represent such structures for this purpose. In this paper, we propose a new method for representing RNA sequence profiles and finding structural alignment of RNAs based on profile context-sensitive hidden Markov models (profile-csHMMs). Unlike existing models, the proposed approach can handle any kind of RNA secondary structures, including pseudoknots. We show that profile-csHMMs can provide an effective framework for the computational analysis of RNAs and the identification of ncRNA genes

    Computational identification and analysis of noncoding RNAs - Unearthing the buried treasures in the genome

    Get PDF
    The central dogma of molecular biology states that the genetic information flows from DNA to RNA to protein. This dogma has exerted a substantial influence on our understanding of the genetic activities in the cells. Under this influence, the prevailing assumption until the recent past was that genes are basically repositories for protein coding information, and proteins are responsible for most of the important biological functions in all cells. In the meanwhile, the importance of RNAs has remained rather obscure, and RNA was mainly viewed as a passive intermediary that bridges the gap between DNA and protein. Except for classic examples such as tRNAs (transfer RNAs) and rRNAs (ribosomal RNAs), functional noncoding RNAs were considered to be rare. However, this view has experienced a dramatic change during the last decade, as systematic screening of various genomes identified myriads of noncoding RNAs (ncRNAs), which are RNA molecules that function without being translated into proteins [11], [40]. It has been realized that many ncRNAs play important roles in various biological processes. As RNAs can interact with other RNAs and DNAs in a sequence-specific manner, they are especially useful in tasks that require highly specific nucleotide recognition [11]. Good examples are the miRNAs (microRNAs) that regulate gene expression by targeting mRNAs (messenger RNAs) [4], [20], and the siRNAs (small interfering RNAs) that take part in the RNAi (RNA interference) pathways for gene silencing [29], [30]. Recent developments show that ncRNAs are extensively involved in many gene regulatory mechanisms [14], [17]. The roles of ncRNAs known to this day are truly diverse. These include transcription and translation control, chromosome replication, RNA processing and modification, and protein degradation and translocation [40], just to name a few. These days, it is even claimed that ncRNAs dominate the genomic output of the higher organisms such as mammals, and it is being suggested that the greater portion of their genome (which does not encode proteins) is dedicated to the control and regulation of cell development [27]. As more and more evidence piles up, greater attention is paid to ncRNAs, which have been neglected for a long time. Researchers began to realize that the vast majority of the genome that was regarded as “junk,” mainly because it was not well understood, may indeed hold the key for the best kept secrets in life, such as the mechanism of alternative splicing, the control of epigenetic variations and so forth [27]. The complete range and extent of the role of ncRNAs are not so obvious at this point, but it is certain that a comprehensive understanding of cellular processes is not possible without understanding the functions of ncRNAs [47]

    An overview of the role of context-sensitive HMMs in the prediction of ncRNA genes

    Get PDF
    Non-coding RNAs (ncRNA) are RNA molecules that function in the cells without being translated into proteins. In recent years, much evidence has been found that ncRNAs play a crucial role in various biological processes. As a result, there has been an increasing interest in the prediction of ncRNA genes. Due to the conserved secondary structure in ncRNAs, there exist pairwise dependencies between distant bases. These dependencies cannot be effectively modeled using traditional HMMs, and we need a more complex model such as the context-sensitive HMM (csHMM). In this paper, we overview the role of csHMMs in the RNA secondary structure analysis and the prediction of ncRNA genes. It is demonstrated that the context-sensitive HMMs can serve as an efficient framework for these purposes

    Developing and applying heterogeneous phylogenetic models with XRate

    Get PDF
    Modeling sequence evolution on phylogenetic trees is a useful technique in computational biology. Especially powerful are models which take account of the heterogeneous nature of sequence evolution according to the "grammar" of the encoded gene features. However, beyond a modest level of model complexity, manual coding of models becomes prohibitively labor-intensive. We demonstrate, via a set of case studies, the new built-in model-prototyping capabilities of XRate (macros and Scheme extensions). These features allow rapid implementation of phylogenetic models which would have previously been far more labor-intensive. XRate's new capabilities for lineage-specific models, ancestral sequence reconstruction, and improved annotation output are also discussed. XRate's flexible model-specification capabilities and computational efficiency make it well-suited to developing and prototyping phylogenetic grammar models. XRate is available as part of the DART software package: http://biowiki.org/DART .Comment: 34 pages, 3 figures, glossary of XRate model terminolog

    Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction

    Get PDF
    BACKGROUND: RNA secondary structure prediction methods based on probabilistic modeling can be developed using stochastic context-free grammars (SCFGs). Such methods can readily combine different sources of information that can be expressed probabilistically, such as an evolutionary model of comparative RNA sequence analysis and a biophysical model of structure plausibility. However, the number of free parameters in an integrated model for consensus RNA structure prediction can become untenable if the underlying SCFG design is too complex. Thus a key question is, what small, simple SCFG designs perform best for RNA secondary structure prediction? RESULTS: Nine different small SCFGs were implemented to explore the tradeoffs between model complexity and prediction accuracy. Each model was tested for single sequence structure prediction accuracy on a benchmark set of RNA secondary structures. CONCLUSIONS: Four SCFG designs had prediction accuracies near the performance of current energy minimization programs. One of these designs, introduced by Knudsen and Hein in their PFOLD algorithm, has only 21 free parameters and is significantly simpler than the others

    Random generation of RNA secondary structures according to native distributions

    Get PDF
    Nebel M, Scheid A, Weinberg F. Random generation of RNA secondary structures according to native distributions. Algorithms for Molecular Biology. 2011;6(1): 24
    • …
    corecore