2,561 research outputs found

    Learning Analytics: Translating Data into “Just-in-Time” Interventions

    Get PDF
    Despite the burgeoning studies on student attrition and retention, many institutions continue to deal with related issues, including D, F, and W grades rates. The emerging and rapidly developing Learning Analytics (LA) field shows great potential for improving learning outcomes by monitoring and analyzing student performance to allow instructors to recommend specific interventions based on key performance indicators. Unfortunately, higher education has been slow to implement it. We, therefore, provide the rationale and benefits of increased LA integration into courses and curriculum. We further identify and suggest ready-to-implement best practices, as well as tools available in Learning Management Systems (LMSs) and other helpful resources

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF

    Examining Game-like Design Elements and Student Engagement in an Online Asychronous Course for Undergraduate University Students

    Get PDF
    Due to growing number of online university courses (Allen & Seaman, 2016; Picciano, 2015; Wladis, Wladis, & Hachey, 2014), this study examined whether game-like design strategies can be used to increase the quality of an asynchronous online course experience for undergraduate students. Student engagement is related to learning activities such as student-student, student-instructor, and student-course material interaction, as well as positive factors such as satisfaction, accomplishment, and active and collaborative learning (Kuh, Kinzie, Buckley, Bridges, & Hayek, 2006; Shea et al., 2010). While there is a growing body of literature that deals with using game mechanics in instructional design generally, less is known about how game mechanics can increase student engagement in an online, asynchronous, university-level course. The quasi-treatment design of this study allowed for the comparison of student experiences in two versions of the same asynchronous undergraduate course. Data were collected via an online survey of perceived engagement, LMS-supported analytics, and grades. This study shows the current technology use of the students. The majority of students who participated in this study have been using the internet and computers for seven years or more. Based on this study, designers and instructors of online courses may consider using game-like hidden badges as a way to improve engagement in the asynchronous learning environment. Reward schedules, clues, reminders, and profiles could be essential for efficient implementation of game mechanics

    Learning analytics experience among academics in Australia and Malaysia: A comparison

    Get PDF
    Several studies have been conducted to evaluate the experience and involvement of academics in learning analytics (LA) due to its potential for improving teaching and learning. However, findings often reflect an educational culture which is indicative of the institutional or national context where the study has occurred, resulting in bias regarding LA perspectives. Therefore, this study seeks to compare and contrast the experiences of LA among academics in Australia and Malaysia, with intentions to learn from each other's experience. Areas of comparison were: (1) academics' involvement in LA activities; (2) academics' responses to the institutional capacity in supporting LA; and 3) academics' concerns about the ethical issues surrounding LA. A survey of 353 Australian and 224 Malaysian academics revealed similarities and differences. It is evident from these results that the context and infrastructure for LA are at different stages of development in both countries. Nevertheless, the results provide an interesting reflection on academics' needs, institutional understanding, policies, and educational cultural biases in applying LA in teaching and learning in higher education institutions

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Evaluation of a Multiple Regression Model for Noisy and Missing Data

    Get PDF
    The standard data collection problems may involve noiseless data while on the other hand large organizations commonly experience noisy and missing data, probably concerning data collected from individuals. As noisy and missing data will be significantly worrisome for occasions of the vast data collection then the investigation of different filtering techniques for big data environment would be remarkable. A multiple regression model where big data is employed for experimenting will be presented. Approximation for datasets with noisy and missing data is also proposed. The statistical root mean squared error (RMSE) associated with correlation coefficient (COEF) will be analyzed to prove the accuracy of estimators. Finally, results predicted by massive online analysis (MOA) will be compared to those real data collected from the following different time. These theoretical predictions with noisy and missing data estimation by simulation, revealing consistency with the real data are illustrated. Deletion mechanism (DEL) outperforms with the lowest average percentage of error

    Promoting flexible mathematical thinking with growth mindset, deliberate practice, and serious games

    Get PDF
    ABSTRACT Adaptive expertise is a greatly appreciated, yet rarely achieved, goal of mathematics curricula because it is considered to typify high-level mathematical thinking. Adaptive expertise demonstrates knowledge and skills that can be dynamically implemented in uncommon situations, not just within highly defined tasks or sufficiently prepared contexts. To achieve adaptive expertise, students must be given occasions to practice solving open-ended mathematical tasks in unfamiliar circumstances, allowing them to contemplate, analyze, and explore different connections and alternative solutions to develop their emerging skills and knowledge structures. Traditional math classrooms are often equipped with textbooks and instructional approaches that focus on isolated, routine exercises, or drill-andpractice, which encourage students to master isolated procedural techniques to find the most or only efficient solution. Math teachers, therefore, employ teaching methods that emphasize speed and accuracy using these materials. The idea of mathematics as a “fixed” subject, which is full of rigid and absolute rules, unintentionally continues to be reinforced. This doctoral dissertation aims to investigate design principles for learning environments that support flexible mathematical thinking in mathematics education. This thesis focuses on two objectives: first, it aspires to understand how adaptive expertise can be promoted with deliberate practice, and whether it can be done by using a mathematical game-based learning environment called the Number Navigation Game (NNG). The nature of deliberate practice is demanding and occurs just beyond one’s abilities. It necessitates deep engagement, continuous efforts to enhance performance, and a positive attitude towards challenges—traits synonymous with a growth mindset. Given the association between a growth mindset and persistent learning behavior, the second objective explores ways to cultivate growth mindset in mathematics classrooms. This is vital for integrating game-based learning into conventional mathematics instruction and realizing the goal of adaptive expertise in mathematics. This dissertation is divided into two parts, encompassing three sub-studies. Part one, comprising Studies I and II, focuses on the Number Navigation Game (NNG). Study I explores game experiences during the NNG development process and examines how different design choices influence students’ gaming experiences. The results provide insights into the iterative design process of a research-based serious game, shedding light on students' interactions with both learning and gaming components and their relation to novel mathematical learning objectives. Study II delves into various game performance profiles using gaming analytics and investigates the diverse ways students engage with the NNG. Utilizing log data from game performances in the energy mode, combined with measured mathematics learning outcomes, math interest, perceived challenge, and experienced flow during gameplay, Study II offers evidence on promoting adaptive expertise through deliberate practice, game-based learning environments, and learning outcomes. In essence, Studies I and II highlight how the NNG serves as a supportive platform for presenting students with novel contexts, challenging tasks, and immediate feedback, making it a viable tool for traditional classrooms. Part two (Study III) investigates the current state of growth mindset interventions in mathematics education through a systematic review. The results show that when implicit theories of intelligence interventions were conducted specifically in the math domain, positive results were reported, whereas general implicit theories of intelligence interventions yielded mixed results. This indicates that to make the necessary behavioral changes based on changed beliefs, participants need to engage with mathematical content at a deeper level than the surface level. Most importantly, the learning environment must be embedded with elements that support struggle and mistakes, encourage effortful practices, and make progress visible to students. In this way, students will be provided with evidence of the development of their own mathematical skills as a result of practice. KEYWORDS: adaptive expertise, game-based learning environment, growth mindset, deliberate practice, flexible mathematical thinkingTIIVISTELMÄ Adaptiivinen asiantuntijuus on yksi korkeatasoisen matemaattisen ajattelun taidoista ja sen kehittymistĂ€ on pidetty tĂ€rkeĂ€nĂ€ tavoitteena matematiikan opetussuunnitelmissa, vaikka kĂ€ytĂ€nnön opetustyössĂ€ sitĂ€ harvoin saavutetaankaan. Adaptiivinen asiantuntijuus kuvaa tietoja ja taitoja, joita voidaan soveltaa joustavasti uusissa tilanteissa, ei vain selkeĂ€sti ennalta mÀÀritellyissĂ€ tehtĂ€vissĂ€ tai konteksteissa. TĂ€mĂ€n saavuttamiseksi on tĂ€rkeÀÀ, ettĂ€ oppilaille tarjotaan mahdollisuus harjoitella avoimien matemaattisten ongelmien ratkaisemista uusissa konteksteissa. TĂ€llöin he voivat pohtia, analysoida, tutkia erilaisia yhteyksiĂ€ ja vaihtoehtoisia ratkaisuja, mikĂ€ kehittÀÀ heidĂ€n taitojaan. PerinteisessĂ€ matematiikan opetuksessa on usein kĂ€ytössĂ€ oppikirjoja ja opetusmenetelmiĂ€, jotka keskittyvĂ€t yksittĂ€isiin, rutiininomaisiin harjoituksiin tai yksinkertaiseen toistoon perustavaan harjoitteluun. NĂ€mĂ€ valmistavat oppilaita hallitsemaan mekaaniset laskutoimitukset ja proseduurit tehokkaimman tai ainoan ratkaisun löytĂ€miseen. TĂ€llaiset oppimateriaalit ja -menetelmĂ€t tĂ€htÀÀvĂ€t nopeuteen ja tarkkuuteen. TĂ€llöin ajatus matematiikasta joustamattomana kouluaineena, joka on tĂ€ynnĂ€ jĂ€ykkiĂ€ ja ehdottomia sÀÀntöjĂ€, jatkaa vahvistumistaan tahattomasti. TĂ€mĂ€n vĂ€itöskirjan tavoitteena on edistÀÀ joustavan matemaattisen ajattelun kehittĂ€mistĂ€ matematiikan opetuksessa. VĂ€itöskirja keskittyy kahteen osatavoitteeseen. EnsinnĂ€kin vĂ€itöskirjatutkimuksissa pyritÀÀn ymmĂ€rtĂ€mÀÀn, miten adaptiivista asiantuntijuutta voidaan edistÀÀ mÀÀrĂ€tietoisella harjoittelulla, ja voidaanko adaptiivista asiantuntijuutta kehittÀÀ kĂ€yttĂ€mĂ€llĂ€ matemaattista pelillistĂ€ Number Navigation Game oppimisympĂ€ristöÀ. Toiseksi mÀÀrĂ€tietoinen harjoittelu on vaativaa ja tapahtuu juuri oppijan kykyjen ÀÀrirajoilla; se vaatii syvÀÀ keskittymistĂ€, sitoutumista, sinnikĂ€stĂ€ pyrkimystĂ€ suorituksen parantamiseen ja positiivista asennetta vaikeiden, epĂ€miellyttĂ€viĂ€kin tunteita herĂ€ttĂ€vien tehtĂ€vien edessĂ€. SekĂ€ sinnikkyys suoritusten parantamisessa ettĂ€ positiiviset asenteet haasteita kohtaan ovat myös kasvun asenteelle tunnusomaisia piirteitĂ€. Useissa tutkimuksissa vĂ€itetÀÀn, ettĂ€ kasvun ajattelutavan tukeminen edistÀÀ sinnikĂ€stĂ€ oppimiskĂ€yttĂ€ytymistĂ€. YmmĂ€rrystĂ€ siitĂ€, kuinka kasvun ajattelutapaa voidaan tukea matematiikan tunneilla, voidaan hyödyntÀÀ, kun pelillistĂ€ oppimista integroidaan perinteiseen matematiikan opetukseen ja tavoitteena on adaptiivisen asiantuntijuuden taidot matematiikassa. VĂ€itöskirjassa on kaksi osaa, joihin kolme osatutkimusta jakautuu. EnsimmĂ€inen osa sisĂ€ltÀÀ Number Navigation Game -peliĂ€ koskevat tutkimukset I ja II. Tutkimuksessa I kartoitettiin oppilaiden pelikokemuksia pelin kehitysprosessin aikana, ja sekĂ€ sitĂ€, kuinka erilaiset suunnitteluvalinnat vaikuttivat oppilaiden pelikokemuksiin. Tutkimukset tuottivat uutta tietoa tutkimuspohjaisen oppimispelin suunnittelusta ja muokkausprosessista, mikĂ€ puolestaan tuotti yleisempÀÀ tietoa oppilaiden ja pelin elementtien vuorovaikutuksesta, ja siitĂ€ miten tĂ€mĂ€ vuorovaikutus liittyy uudenlaisiin matemaattisiin oppimistavoitteisiin. Tutkimus II keskittyi erilaisiin pelaajien suoritusprofiileihin pelianalytiikan avulla ja tutki erilaisia tapoja, joilla oppilaat pelasivat Number Navigation Game -peliĂ€. Tutkimuksessa hyödynnettiin lokidataa pelaajien suorituksista yhdessĂ€ mitattujen matematiikan oppimistulosten, matematiikan kiinnostuksen sekĂ€ pelaamisen aikana koetun haastavuuden ja flow-kokemuksen kanssa. Tutkimus tuotti tietoa siitĂ€, millĂ€ tavalla adaptiivista asiantuntijuutta voidaan edistÀÀ tukemalla mÀÀrĂ€tietoista harjoittelua pelioppimisympĂ€ristössĂ€. Yhteenvetona voidaan todeta, ettĂ€ tutkimukset I ja II tuottivat aikaisempaa tarkempaa tietoa siitĂ€, kuinka Number Navigation Game -peli voi tarjota kannustavan oppimisalustan, joka tarjoaa avoimen oppimisympĂ€ristön, rutiinista poikkeavia ja haastavia tehtĂ€viĂ€, sekĂ€ pelidesignin, joka antaa oppijalle selkeÀÀ, vĂ€litöntĂ€ palautetta. VĂ€itöskirjan toisen osan (Tutkimus III) tavoitteena on tarkastella kasvun ajattelutavan interventioita matematiikan opetuksessa systemaattisen katsauksen avulla. Tulokset osoittivat, ettĂ€ kun Ă€lykkyyttĂ€ koskeviin uskomuksiin perustuvia kasvun ajattelutapaa tukevia interventioita toteutettiin erityisesti matematiikan alalla, raportoitiin positiivisia tuloksia. Kun kasvun ajattelutapaa tukevia interventioita toteutettiin yleisesti ilman erityistĂ€ kontekstia, tulokset olivat ristiriitaisia. TĂ€mĂ€ osoittaa, ettĂ€ jotta tarvittavat kĂ€yttĂ€ytymismuutokset toteutuvat muuttuneiden uskomusten perusteella, osallistujien on uppouduttava matemaattiseen sisĂ€ltöön pintatasoa syvĂ€llisemmin. On olennaista, ettĂ€ oppimisympĂ€ristöön on upotettu elementtejĂ€, jotka tukevat "kamppailua ja virheitĂ€", ettĂ€ ne kannustavat ponnisteluihin ja ettĂ€ edistyminen tehdÀÀn oppijalle nĂ€kyvĂ€ksi. NĂ€in oppija saa todisteita omien matemaattisten taitojensa kehittymisestĂ€ harjoittelun seurauksena. ASIASANAT: adaptiivinen asiantuntijuus, pelioppimisympĂ€ristö, kasvun ajattelutapa, tarkoituksellinen harjoittelu, joustava matemaattinen ajattel
    • 

    corecore