86 research outputs found

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    D2D-V2X-SDN: Taxonomy and Architecture towards 5G Mobile Communication System

    Get PDF
    In the era of information society and 5G networks, cars are extremely important mobile information carriers. In order to meet the needs of multi-scenario business requirements such as vehicle assisted driving and in-vehicle entertainment, cars need to interact with the outside world. This interconnection and data transmission process is usually called vehicular communication (V2X, Vehicle-to-Everything). Device-to-device (D2D) communication not only has partial nature of communication, but also alleviate the current problem of spectrum scarcity of resources. The application of D2D communication in V2X can meet the requirements of high reliability and low latency, but resource reuse also brings interference. Software-defined networking (SDN) provides an optimal solution for interoperability and flexibility between the V2X and D2D communication. This paper reviews the integration of D2D and V2X communication from the perspective of SDN. The state-of-the-art and architectures of D2D-V2X were discussed. The similarity, characteristics, routing control, location management, patch scheduling and recovery is described. The integrated architecture reviewed in this paper can solve the problems of routing management, interference management and mobile management. It also overcome the disconnection problem between the D2D-V2X in terms of SDN and provides some effective solutions.- Qatar National Research Fund (QNRF) - [UREP27-020-1-003]. - Ministry of Higher Education, Malaysia (MOHE) - [FRGS/1/2018/ICT02/UKM/02/6]. - National Research Foundation of Korea (NRF) - [2019R1C1C1007277]. - Taif University (TU)- [TURSP-2020/260]

    ์ž์œจ์ฃผํ–‰์„ ์œ„ํ•œ V2X ๊ธฐ๋ฐ˜ ์ฐจ๋Ÿ‰ CDN ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณตํ•™์ „๋ฌธ๋Œ€ํ•™์› ์‘์šฉ๊ณตํ•™๊ณผ, 2021. 2. ๊น€์„ฑ์šฐ.Recent technical innovation has driven the evolution of autonomous vehicles. To improve safety as well as on-road vehicular experience, vehicles should be connected with each other or to vehicular networks. Some specification groups, e.g., IEEE and 3GPP, have studied and released vehicular communication requirements and architecture. IEEEs Wireless Access in Vehicular Environment focuses on dedicated and short-range communication, while 3GPPs New radio V2X supports not only sidelink but also uplink communication. The 3GPP Release 16, which supports 5G New Radio, offers evolved functionalities such as network slice, Network Function Virtualization, and Software-Defined Networking. In this study, we define and design a vehicular network architecture compliant with 5G core networks. For localization of autonomous driving vehicles, a high-definition map needs to contain the context of trajectory . We also propose new methods by which autonomous vehicles can push and pull map content efficiently, without causing bottlenecks on the network core. We evaluate the performance of V2X and of the proposed caching policy via network simulations. Experimental results indicate that the proposed method improves the performance of vehicular content delivery in real-world road environments.์ตœ๊ทผ๋“ค์–ด ๊ธฐ์ˆ ์˜ ํ˜์‹ ์€ ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ์˜ ๋ฐœ์ „์„ ๊ฐ€์†ํ™” ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณด๋‹ค ๋†’์€ ์ˆ˜์ค€์˜ ์ž์œจ ์ฃผํ–‰์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์ฐจ๋Ÿ‰์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์„œ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์–ด์•ผ ํ•˜๊ณ  ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „๊ณผ ํŽธ์˜์„ฑ์„ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ์ •๋ณด๋ฅผ ๊ณต์œ  ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ํ‘œ์ค€ํ™” ๋‹จ์ฒด์ธ IEEE์™€ 3GPP๋Š” ์ฐจ๋Ÿ‰ ํ†ต์‹  ์š”๊ตฌ์‚ฌํ•ญ, ์•„ํ‚คํ…์ฒ˜๋ฅผ ์—ฐ๊ตฌํ•˜๊ณ  ๊ฐœ์ •ํ•ด์™”๋‹ค. IEEE๊ฐ€ ์ „์šฉ ์ฑ„๋„์„ ํ†ตํ•œ ๊ทผ์ ‘ ์ง€์—ญ ํ†ต์‹ ์— ์ดˆ์ ์„ ๋งž์ถ”๋Š” ๋ฐ˜๋ฉด์—, 3GPP์˜ New Radio V2X๋Š” Sidelink ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Uplink ํ†ต์‹ ์„ ๋™์‹œ์— ์ง€์›ํ•œ๋‹ค. 5G ํ†ต์‹ ์„ ์ง€์›ํ•˜๋Š” 3GPP Release 16์€ Network Slice, NFV, SDN๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ํ†ต์‹  ๊ธฐ๋Šฅ๋“ค์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒˆ๋กญ๊ฒŒ ์ •์˜๋œ 5G Core Network Architecture๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฐจ๋Ÿ‰ ๋„คํŠธ์›Œํฌ๋ฅผ ์ •์˜ํ•˜๊ณ  ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ์˜ ์ธก์œ„๋ฅผ ์œ„ํ•ด์„œ, ๊ณ ํ•ด์ƒ๋„ ์ง€๋„๋Š” ๊ฐ ๊ตฌ์„ฑ์š”์†Œ๋“ค์˜ ์˜๋ฏธ์™€ ์†์„ฑ์„ ์ž์„ธํ•˜๊ฒŒ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์—ฐ๊ตฌ์—์„œ V2X ๋„คํŠธ์›Œํฌ ์ƒ์— HD map์„ ์ค‘๊ณ„ํ•  ์ˆ˜ ์žˆ๋Š” Edge Server๋ฅผ ์ œ์•ˆ ํ•จ์œผ๋กœ์จ, ์ค‘์•™์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ‘๋ชฉํ˜„์ƒ์„ ์ค„์ด๊ณ  ์ „์†ก Delay๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋˜ํ•œ Edge์˜ ์ปจํ…์ธ ๋ฅผ ๋“ฑ๋กํ•˜๊ณ  ์‚ญ์ œํ•˜๋Š” ์ •์ฑ…์œผ๋กœ ๊ธฐ์กด์˜ LRU, LFU๊ฐ€ ์•„๋‹Œ ์ƒˆ๋กœ์šด ์ปจํ…์ธ  ๊ต์ฒด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ค์ œ ์ฃผํ–‰ ์‹œํ—˜๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ „์†ก ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œ์ผฐ์œผ๋ฉฐ, Edge ์ปจํ…์ธ ์˜ ํ™œ์šฉ๋„๋ฅผ ๋†’์˜€๋‹ค.I. Introduction 1 II. Related Works 6 2.1 V2X Standardization 6 2.1.1 IEEE WAVE 6 2.1.2 3GPP C-V2X 9 2.2 Geographic Contents 14 2.3 Vehicular Content Centric Network 17 III. System Modeling 20 3.1 NR-V2X Architecture Analysis 20 3.2 Caching Strategy for HD Map Acquisition 23 IV. Evaluation 30 4.1 Contents Replacement Strategy 30 4.2 V2X Characteristics 36 4.3 Edge Performance in Driving on the Road 38 4.4 Edge Performance on 3D Point Clouds Caching for Localization 44 V. Conclusion 47 Bibliography 49 Abstract 54Maste

    D4.2 Final report on trade-off investigations

    Full text link
    Research activities in METIS WP4 include several as pects related to the network-level of future wireless communication networks. Thereby, a large variety of scenarios is considered and solutions are proposed to serve the needs envis ioned for the year 2020 and beyond. This document provides vital findings about several trade-offs that need to be leveraged when designing future network-level solutions. In more detail, it elaborates on the following trade- offs: โ€ข Complexity vs. Performance improvement โ€ข Centralized vs. Decentralized โ€ข Long time-scale vs. Short time-scale โ€ข Information Interflow vs. Throughput/Mobility enha ncement โ€ข Energy Efficiency vs. Network Coverage and Capacity Outlining the advantages and disadvantages in each trade-off, this document serves as a guideline for the application of different network-level solutions in different situations and therefore greatly assists in the design of future communication network architectures.Aydin, O.; Ren, Z.; Bostov, M.; Lakshmana, TR.; Sui, Y.; Svensson, T.; Sun, W.... (2014). D4.2 Final report on trade-off investigations. http://hdl.handle.net/10251/7676

    The performance of the vehicular communication-clustering process

    Get PDF
    For the new wireless systems and beyond, the intelligent transportation system is considered as one of the main features that could be covered in the new research topics. Furthermore, both high-speed data transmission and data processing play a crucial role for these generations. Our work covers two main propositions in order to attain an improvement in such intelligent systems performance. A clustering algorithm is proposed and presented for grouping mobile nodes based on their speeds with some modified head assignments processes. This will be combined with a parallel-processing technique that enhances the QoS. Mainly, this work concerns enhancing the V2V data transmission and the processing speed. Thus, a wavelet processing stage has been imposed to optimize the transmitted power phenomenon. In order to check the validity of such proposition, five main efficiency factors have been investigated; namely complementary cumulative distributions, bit rates, energy efficiency, the lifetime of cluster head and the ordinary nodes reattaching-head average times.

    CARAMEL: results on a secure architecture for connected and autonomous vehicles detecting GPS spoofing attacks

    Get PDF
    The main goal of the H2020-CARAMEL project is to address the cybersecurity gaps introduced by the new technological domains adopted by modern vehicles applying, among others, advanced Artificial Intelligence and Machine Learning techniques. As a result, CARAMEL enhances the protection against threats related to automated driving, smart charging of Electric Vehicles, and communication among vehicles or between vehicles and the roadside infrastructure. This work focuses on the latter and presents the CARAMEL architecture aiming at assessing the integrity of the information transmitted by vehicles, as well as at improving the security and privacy of communication for connected and autonomous driving. The proposed architecture includes: (1) multi-radio access technology capabilities, with simultaneous 802.11p and LTE-Uu support, enabled by the connectivity infrastructure; (2) a MEC platform, where, among others, algorithms for detecting attacks are implemented; (3) an intelligent On-Board Unit with anti-hacking features inside the vehicle; (4) a Public Key Infrastructure that validates in real-time the integrity of vehicleโ€™s data transmissions. As an indicative application, the interaction between the entities of the CARAMEL architecture is showcased in case of a GPS spoofing attack scenario. Adopted attack detection techniques exploit robust in-vehicle and cooperative approaches that do not rely on encrypted GPS signals, but only on measurements available in the CARAMEL architecture.This work was supported by the European Unionโ€™s H2020 research and innovation programme under the CARAMEL project (Grant agreement No. 833611). The work of Christian Vitale, Christos Laoudias and Georgios Ellinas was also supported by the European Unionโ€™s Horizon 2020 Research and Innovation Programme under Grant 739551 (KIOS CoE) and from the Republic of Cyprus through the Directorate General for European Programmes, Coordination, and Development. The work of Jordi Casademont and Pouria Sayyad Khodashenas was also supported by FEDER and Secretaria dโ€™Universitats i Recerca del Departament dโ€™Empresa i Coneixement de la Generalitat de Catalunya through projects Fem IoT and SGR 2017-00376 and by the ERDFPeer ReviewedPostprint (author's final draft

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond
    • โ€ฆ
    corecore