4,895 research outputs found

    Information-Theoretic Active Learning for Content-Based Image Retrieval

    Full text link
    We propose Information-Theoretic Active Learning (ITAL), a novel batch-mode active learning method for binary classification, and apply it for acquiring meaningful user feedback in the context of content-based image retrieval. Instead of combining different heuristics such as uncertainty, diversity, or density, our method is based on maximizing the mutual information between the predicted relevance of the images and the expected user feedback regarding the selected batch. We propose suitable approximations to this computationally demanding problem and also integrate an explicit model of user behavior that accounts for possible incorrect labels and unnameable instances. Furthermore, our approach does not only take the structure of the data but also the expected model output change caused by the user feedback into account. In contrast to other methods, ITAL turns out to be highly flexible and provides state-of-the-art performance across various datasets, such as MIRFLICKR and ImageNet.Comment: GCPR 2018 paper (14 pages text + 2 pages references + 6 pages appendix

    Interactive Machine Learning with Applications in Health Informatics

    Full text link
    Recent years have witnessed unprecedented growth of health data, including millions of biomedical research publications, electronic health records, patient discussions on health forums and social media, fitness tracker trajectories, and genome sequences. Information retrieval and machine learning techniques are powerful tools to unlock invaluable knowledge in these data, yet they need to be guided by human experts. Unlike training machine learning models in other domains, labeling and analyzing health data requires highly specialized expertise, and the time of medical experts is extremely limited. How can we mine big health data with little expert effort? In this dissertation, I develop state-of-the-art interactive machine learning algorithms that bring together human intelligence and machine intelligence in health data mining tasks. By making efficient use of human expert's domain knowledge, we can achieve high-quality solutions with minimal manual effort. I first introduce a high-recall information retrieval framework that helps human users efficiently harvest not just one but as many relevant documents as possible from a searchable corpus. This is a common need in professional search scenarios such as medical search and literature review. Then I develop two interactive machine learning algorithms that leverage human expert's domain knowledge to combat the curse of "cold start" in active learning, with applications in clinical natural language processing. A consistent empirical observation is that the overall learning process can be reliably accelerated by a knowledge-driven "warm start", followed by machine-initiated active learning. As a theoretical contribution, I propose a general framework for interactive machine learning. Under this framework, a unified optimization objective explains many existing algorithms used in practice, and inspires the design of new algorithms.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147518/1/raywang_1.pd

    Batch Mode Active Learning with Applications to Text Categorization and Image Retrieval

    Full text link

    Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems

    Full text link
    This master tesis deals with the problem of image retrieval from large image databases. A particularly interesting problem is the retrieval of all images which are similar to one in the user's mind, taking into account his/her feedback which is expressed as positive or negative preferences for the images that the system progressively shows during the search. Here, a novel algorithm is presented for the incorporation of user preferences in an image retrieval system based exclusively on the visual content of the image, which is stored as a vector of low-level features. The algorithm considers the probability of an image belonging to the set of those sought by the user, and models the logit of this probability as the output of a linear model whose inputs are the low level image features. The image database is ranked by the output of the model and shown to the user, who selects a few positive and negative samples, repeating the process in an iterative way until he/she is satisfied. The problem of the small sample size with respect to the number of features is solved by adjusting several partial linear models and combining their relevance probabilities by means of an ordered weighted averaged (OWA) operator. Experiments were made with 40 users and they exhibited good performance in finding a target image (4 iterations on average) in a database of about 4700 imagesZuccarello, PD. (2007). Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems. http://hdl.handle.net/10251/12196Archivo delegad

    Batch Mode Active Learning with Applications to Text Categorization and Image Retrieval

    Get PDF
    Singapore Ministry of Education Academic Research Fund Tier

    Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review

    Get PDF
    This paper investigates recent research on active learning for (geo) text and image classification, with an emphasis on methods that combine visual analytics and/or deep learning. Deep learning has attracted substantial attention across many domains of science and practice, because it can find intricate patterns in big data; but successful application of the methods requires a big set of labeled data. Active learning, which has the potential to address the data labeling challenge, has already had success in geospatial applications such as trajectory classification from movement data and (geo) text and image classification. This review is intended to be particularly relevant for extension of these methods to GISience, to support work in domains such as geographic information retrieval from text and image repositories, interpretation of spatial language, and related geo-semantics challenges. Specifically, to provide a structure for leveraging recent advances, we group the relevant work into five categories: active learning, visual analytics, active learning with visual analytics, active deep learning, plus GIScience and Remote Sensing (RS) using active learning and active deep learning. Each category is exemplified by recent influential work. Based on this framing and our systematic review of key research, we then discuss some of the main challenges of integrating active learning with visual analytics and deep learning, and point out research opportunities from technical and application perspectives-for application-based opportunities, with emphasis on those that address big data with geospatial components

    Classification Modeling for Malaysian Blooming Flower Images Using Neural Networks

    Get PDF
    Image processing is a rapidly growing research area of computer science and remains as a challenging problem within the computer vision fields. For the classification of flower images, the problem is mainly due to the huge similarities in terms of colour and texture. The appearance of the image itself such as variation of lights due to different lighting condition, shadow effect on the object’s surface, size, shape, rotation and position, background clutter, states of blooming or budding may affect the utilized classification techniques. This study aims to develop a classification model for Malaysian blooming flowers using neural network with the back propagation algorithms. The flower image is extracted through Region of Interest (ROI) in which texture and colour are emphasized in this study. In this research, a total of 960 images were extracted from 16 types of flowers. Each ROI was represented by three colour attributes (Hue, Saturation, and Value) and four textures attribute (Contrast, Correlation, Energy and Homogeneity). In training and testing phases, experiments were carried out to observe the classification performance of Neural Networks with duplication of difficult pattern to learn (referred to as DOUBLE) as this could possibly explain as to why some flower images were difficult to learn by classifiers. Results show that the overall performance of Neural Network with DOUBLE is 96.3% while actual data set is 68.3%, and the accuracy obtained from Logistic Regression with actual data set is 60.5%. The Decision Tree classification results indicate that the highest performance obtained by Chi-Squared Automatic Interaction Detection(CHAID) and Exhaustive CHAID (EX-CHAID) is merely 42% with DOUBLE. The findings from this study indicate that Neural Network with DOUBLE data set produces highest performance compared to Logistic Regression and Decision Tree. Therefore, NN has been potential in building Malaysian blooming flower model. Future studies can be focused on increasing the sample size and ROI thus may lead to a higher percentage of accuracy. Nevertheless, the developed flower model can be used as part of the Malaysian Blooming Flower recognition system in the future where the colours and texture are needed in the flower identification process
    • …
    corecore