1,800 research outputs found

    Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems

    Get PDF
    In this paper, the identification of a class of multiscale spatio-temporal dynamical sys-tems, which incorporate multiple spatial scales, from observations is studied. The proposed approach is a combination of Adams integration and an orthogonal least squares algorithm, in which the multiscale operators are expanded, using polynomials as basis functions, and the spatial derivatives are estimated by finite difference methods. The coefficients of the polynomials can vary with respect to the space domain to represent the feature of multiple scales involved in the system dynamics and are approximated using a B-spline wavelet multi-resolution analysis (MRA). The resulting identified models of the spatio-temporal evolution form a system of partial differential equations with different spatial scales. Examples are provided to demonstrate the efficiency of the proposed method

    Identifying system poles by applying hyperbolic geometry in the unit disc

    Get PDF

    Paired accelerated arames: The perfect interferometer with everywhere smooth wave amplitudes

    Get PDF
    Rindler's acceleration-induced partitioning of spacetime leads to a nature-given interferometer. It accomodates quantum mechanical and wave mechanical processes in spacetime which in (Euclidean) optics correspond to wave processes in a ``Mach-Zehnder'' interferometer: amplitude splitting, reflection, and interference. These processes are described in terms of amplitudes which behave smoothly across the event horizons of all four Rindler sectors. In this context there arises quite naturally a complete set of orthonormal wave packet histories, one of whose key properties is their "explosivity index". In the limit of low index values the wave packets trace out fuzzy world lines. By contrast, in the asymptotic limit of high index values, there are no world lines, not even fuzzy ones. Instead, the wave packet histories are those of entities with non-trivial internal collapse and explosion dynamics. Their details are described by the wave processes in the above-mentioned Mach-Zehnder interferometer. Each one of them is a double slit interference process. These wave processes are applied to elucidate the amplification of waves in an accelerated inhomogeneous dielectric. Also discussed are the properties and relationships among the transition amplitudes of an accelerated finite-time detector.Comment: 38 pages, RevTex, 10 figures, 4 mathematical tutorials. Html version of the figures and of related papers available at http://www.math.ohio-state.edu/~gerlac

    Extended MacMahon-Schwinger's Master Theorem and Conformal Wavelets in Complex Minkowski Space

    Full text link
    We construct the Continuous Wavelet Transform (CWT) on the homogeneous space (Cartan domain) D_4=SO(4,2)/(SO(4)\times SO(2)) of the conformal group SO(4,2) (locally isomorphic to SU(2,2)) in 1+3 dimensions. The manifold D_4 can be mapped one-to-one onto the future tube domain C^4_+ of the complex Minkowski space through a Cayley transformation, where other kind of (electromagnetic) wavelets have already been proposed in the literature. We study the unitary irreducible representations of the conformal group on the Hilbert spaces L^2_h(D_4,d\nu_\lambda) and L^2_h(C^4_+,d\tilde\nu_\lambda) of square integrable holomorphic functions with scale dimension \lambda and continuous mass spectrum, prove the isomorphism (equivariance) between both Hilbert spaces, admissibility and tight-frame conditions, provide reconstruction formulas and orthonormal basis of homogeneous polynomials and discuss symmetry properties and the Euclidean limit of the proposed conformal wavelets. For that purpose, we firstly state and prove a \lambda-extension of Schwinger's Master Theorem (SMT), which turns out to be a useful mathematical tool for us, particularly as a generating function for the unitary-representation functions of the conformal group and for the derivation of the reproducing (Bergman) kernel of L^2_h(D_4,d\nu_\lambda). SMT is related to MacMahon's Master Theorem (MMT) and an extension of both in terms of Louck's SU(N) solid harmonics is also provided for completeness. Convergence conditions are also studied.Comment: LaTeX, 40 pages, three new Sections and six new references added. To appear in ACH

    Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution

    Full text link
    Textures in images can often be well modeled using self-similar processes while they may at the same time display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will first be shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform by the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axis. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized, this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a non parametric bootstrap based procedure is described, that provides confidence interval in addition to the estimates themselves and enables to construct an isotropy test procedure, that can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis is illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed

    Mosquito Detection with Neural Networks: The Buzz of Deep Learning

    Full text link
    Many real-world time-series analysis problems are characterised by scarce data. Solutions typically rely on hand-crafted features extracted from the time or frequency domain allied with classification or regression engines which condition on this (often low-dimensional) feature vector. The huge advances enjoyed by many application domains in recent years have been fuelled by the use of deep learning architectures trained on large data sets. This paper presents an application of deep learning for acoustic event detection in a challenging, data-scarce, real-world problem. Our candidate challenge is to accurately detect the presence of a mosquito from its acoustic signature. We develop convolutional neural networks (CNNs) operating on wavelet transformations of audio recordings. Furthermore, we interrogate the network's predictive power by visualising statistics of network-excitatory samples. These visualisations offer a deep insight into the relative informativeness of components in the detection problem. We include comparisons with conventional classifiers, conditioned on both hand-tuned and generic features, to stress the strength of automatic deep feature learning. Detection is achieved with performance metrics significantly surpassing those of existing algorithmic methods, as well as marginally exceeding those attained by individual human experts.Comment: For data and software related to this paper, see http://humbug.ac.uk/kiskin2017/. Submitted as a conference paper to ECML 201
    • …
    corecore