4,094 research outputs found

    Diversity-based Deep Reinforcement Learning Towards Multidimensional Difficulty for Fighting Game AI

    Full text link
    In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.Comment: 8 pages, 2 figures, Experimental AI in Games 202

    Behavior Trees in Robotics and AI: An Introduction

    Full text link
    A Behavior Tree (BT) is a way to structure the switching between different tasks in an autonomous agent, such as a robot or a virtual entity in a computer game. BTs are a very efficient way of creating complex systems that are both modular and reactive. These properties are crucial in many applications, which has led to the spread of BT from computer game programming to many branches of AI and Robotics. In this book, we will first give an introduction to BTs, then we describe how BTs relate to, and in many cases generalize, earlier switching structures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. Properties such as safety, robustness, and efficiency are important for an autonomous system, and we describe a set of tools for formally analyzing these using a state space description of BTs. With the new analysis tools, we can formalize the descriptions of how BTs generalize earlier approaches. We also show the use of BTs in automated planning and machine learning. Finally, we describe an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion

    CGAMES'2009

    Get PDF

    Mimicking human player strategies in fighting games using game artificial intelligence techniques

    Get PDF
    Fighting videogames (also known as fighting games) are ever growing in popularity and accessibility. The isolated console experiences of 20th century gaming has been replaced by online gaming services that allow gamers to play from almost anywhere in the world with one another. This gives rise to competitive gaming on a global scale enabling them to experience fresh play styles and challenges by playing someone new. Fighting games can typically be played either as a single player experience, or against another human player, whether it is via a network or a traditional multiplayer experience. However, there are two issues with these approaches. First, the single player offering in many fighting games is regarded as being simplistic in design, making the moves by the computer predictable. Secondly, while playing against other human players can be more varied and challenging, this may not always be achievable due to the logistics involved in setting up such a bout. Game Artificial Intelligence could provide a solution to both of these issues, allowing a human player s strategy to be learned and then mimicked by the AI fighter. In this thesis, game AI techniques have been researched to provide a means of mimicking human player strategies in strategic fighting games with multiple parameters. Various techniques and their current usages are surveyed, informing the design of two separate solutions to this problem. The first solution relies solely on leveraging k nearest neighbour classification to identify which move should be executed based on the in-game parameters, resulting in decisions being made at the operational level and being fed from the bottom-up to the strategic level. The second solution utilises a number of existing Artificial Intelligence techniques, including data driven finite state machines, hierarchical clustering and k nearest neighbour classification, in an architecture that makes decisions at the strategic level and feeds them from the top-down to the operational level, resulting in the execution of moves. This design is underpinned by a novel algorithm to aid the mimicking process, which is used to identify patterns and strategies within data collated during bouts between two human players. Both solutions are evaluated quantitatively and qualitatively. A conclusion summarising the findings, as well as future work, is provided. The conclusions highlight the fact that both solutions are proficient in mimicking human strategies, but each has its own strengths depending on the type of strategy played out by the human. More structured, methodical strategies are better mimicked by the data driven finite state machine hybrid architecture, whereas the k nearest neighbour approach is better suited to tactical approaches, or even random button bashing that does not always conform to a pre-defined strategy

    Insights from the NeurIPS 2021 NetHack Challenge

    Get PDF
    In this report, we summarize the takeaways from the first NeurIPS 2021 NetHack Challenge. Participants were tasked with developing a program or agent that can win (i.e., ‘ascend’ in) the popular dungeon-crawler game of NetHack by interacting with the NetHack Learning Environment (NLE), a scalable, procedurally generated, and challenging Gym environment for reinforcement learning (RL). The challenge showcased community-driven progress in AI with many diverse approaches significantly beating the previously best results on NetHack. Furthermore, it served as a direct comparison between neural (e.g., deep RL) and symbolic AI, as well as hybrid systems, demonstrating that on NetHack symbolic bots currently outperform deep RL by a large margin. Lastly, no agent got close to winning the game, illustrating NetHack’s suitability as a long-term benchmark for AI research

    TOKEN-BASED APPROACH FOR SCALABLE TEAMCOORDINATION

    Get PDF
    To form a cooperative multiagent team, autonomous agents are required to harmonize activities and make the best use of exclusive resources to achieve their common goal. In addition, to handle uncertainty and quickly respond to external environmental events, they should share knowledge and sensor in formation. Unlike small team coordination, agents in scalable team must limit the amount of their communications while maximizing team performance. Communication decisions are critical to scalable-team coordination because agents should target their communications, but these decisions cannot be supported by a precise model or by complete team knowledge.The hypothesis of my thesis is: local routing of tokens encapsulating discrete elements of control, based only on decentralized local probability decision models, will lead to efficient scalable coordination with several hundreds of agents. In my research, coordination controls including all domain knowledge, tasks and exclusive resources are encapsulated into tokens. By passing tokens around, agents transfer team controls encapsulated in the tokens. The team benefits when a token is passed to an agent who can make use of it, but communications incur costs. Hence, no single agent has sole responsible over any shared decision. The key problem lies in how agents make the correct decisions to target communications and pass tokens so that they will potentially benefit the team most when considering communication costs.My research on token-based coordination algorithm starts from the investigation of random walk of token movement. I found a little increase of the probabilities that agents make the right decision to pass a token, the overall efficiency of the token movement could be greatly enhanced. Moreover, if token movements are modeled as a Markov chain, I found that the efficiency of passing tokens could be significantly varied based on different network topologies.My token-based algorithm starts at the investigation of each single decision theoretic agents. Although under the uncertainties that exist in large multiagent teams, agents cannot act optimal, it is still feasible to build a probability model for each agents to rationally pass tokens. Specifically, this decision only allow agent to pass tokens over an associate network where only a few of team members are considered as token receiver.My proposed algorithm will build each agent's individual decision model based on all of its previously received tokens. This model will not require the complete knowledge of the team. The key idea is that I will make use of the domain relationships between pairs of coordination controls. Previously received tokens will help the receiver to infer whether the sender could benefit the team if a related token is received. Therefore, each token is used to improve the routing of other tokens, leading to a dramatic performance improvement when more tokens are added. By exploring the relationships between different types of coordination controls, an integrated coordination algorithm will be built, and an improvement of one aspect of coordination will enhance the performance of the others

    Replicating DeepMind StarCraft II reinforcement learning benchmark with actor-critic methods

    Get PDF
    Reinforcement Learning (RL) is a subfield of Artificial Intelligence (AI) that deals with agents navigating in an environment with the goal of maximizing total reward. Games are good environments to test RL algorithms as they have simple rules and clear reward signals. Theoretical part of this thesis explores some of the popular classical and modern RL approaches, which include the use of Artificial Neural Network (ANN) as a function approximator inside AI agent. In practical part of the thesis we implement Advantage Actor-Critic RL algorithm and replicate ANN based agent described in [Vinyals et al., 2017]. We reproduce the state-of-the-art results in a modern video game StarCraft II, a game that is considered the next milestone in AI after the fall of chess and Go
    corecore