2,035 research outputs found

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Optimal QoS aware multiple paths web service composition using heuristic algorithms and data mining techniques

    Get PDF
    The goal of QoS-aware service composition is to generate optimal composite services that satisfy the QoS requirements defined by clients. However, when compositions contain more than one execution path (i.e., multiple path's compositions), it is difficult to generate a composite service that simultaneously optimizes all the execution paths involved in the composite service at the same time while meeting the QoS requirements. This issue brings us to the challenge of solving the QoS-aware service composition problem, so called an optimization problem. A further research challenge is the determination of the QoS characteristics that can be considered as selection criteria. In this thesis, a smart QoS-aware service composition approach is proposed. The aim is to solve the above-mentioned problems via an optimization mechanism based upon the combination between runtime path prediction method and heuristic algorithms. This mechanism is performed in two steps. First, the runtime path prediction method predicts, at runtime, and just before the actual composition, execution, the execution path that will potentially be executed. Second, both the constructive procedure (CP) and the complementary procedure (CCP) heuristic algorithms computed the optimization considering only the execution path that has been predicted by the runtime path prediction method for criteria selection, eight QoS characteristics are suggested after investigating related works on the area of web service and web service composition. Furthermore, prioritizing the selected QoS criteria is suggested in order to assist clients when choosing the right criteria. Experiments via WEKA tool and simulation prototype were conducted to evaluate the methods used. For the runtime path prediction method, the results showed that the path prediction method achieved promising prediction accuracy, and the number of paths involved in the prediction did not affect the accuracy. For the optimization mechanism, the evaluation was conducted by comparing the mechanism with relevant optimization techniques. The simulation results showed that the proposed optimization mechanism outperforms the relevant optimization techniques by (1) generating the highest overall QoS ratio solutions, (2) consuming the smallest computation time, and (3) producing the lowest percentage of constraints violated number

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Novel optimization schemes for service composition in the cloud using learning automata-based matrix factorization

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyService Oriented Computing (SOC) provides a framework for the realization of loosely couple service oriented applications (SOA). Web services are central to the concept of SOC. They possess several benefits which are useful to SOA e.g. encapsulation, loose coupling and reusability. Using web services, an application can embed its functionalities within the business process of other applications. This is made possible through web service composition. Web services are composed to provide more complex functions for a service consumer in the form of a value added composite service. Currently, research into how web services can be composed to yield QoS (Quality of Service) optimal composite service has gathered significant attention. However, the number and services has risen thereby increasing the number of possible service combinations and also amplifying the impact of network on composite service performance. QoS-based service composition in the cloud addresses two important sub-problems; Prediction of network performance between web service nodes in the cloud, and QoS-based web service composition. We model the former problem as a prediction problem while the later problem is modelled as an NP-Hard optimization problem due to its complex, constrained and multi-objective nature. This thesis contributed to the prediction problem by presenting a novel learning automata-based non-negative matrix factorization algorithm (LANMF) for estimating end-to-end network latency of a composition in the cloud. LANMF encodes each web service node as an automaton which allows v it to estimate its network coordinate in such a way that prediction error is minimized. Experiments indicate that LANMF is more accurate than current approaches. The thesis also contributed to the QoS-based service composition problem by proposing four evolutionary algorithms; a network-aware genetic algorithm (INSGA), a K-mean based genetic algorithm (KNSGA), a multi-population particle swarm optimization algorithm (NMPSO), and a non-dominated sort fruit fly algorithm (NFOA). The algorithms adopt different evolutionary strategies coupled with LANMF method to search for low latency and QoSoptimal solutions. They also employ a unique constraint handling method used to penalize solutions that violate user specified QoS constraints. Experiments demonstrate the efficiency and scalability of the algorithms in a large scale environment. Also the algorithms outperform other evolutionary algorithms in terms of optimality and calability. In addition, the thesis contributed to QoS-based web service composition in a dynamic environment. This is motivated by the ineffectiveness of the four proposed algorithms in a dynamically hanging QoS environment such as a real world scenario. Hence, we propose a new cellular automata-based genetic algorithm (CellGA) to address the issue. Experimental results show the effectiveness of CellGA in solving QoS-based service composition in dynamic QoS environment

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Cloud Service Selection System Approach based on QoS Model: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has received a lot of interest from researchers recently. IoT is seen as a component of the Internet of Things, which will include billions of intelligent, talkative "things" in the coming decades. IoT is a diverse, multi-layer, wide-area network composed of a number of network links. The detection of services and on-demand supply are difficult in such networks, which are comprised of a variety of resource-limited devices. The growth of service computing-related fields will be aided by the development of new IoT services. Therefore, Cloud service composition provides significant services by integrating the single services. Because of the fast spread of cloud services and their different Quality of Service (QoS), identifying necessary tasks and putting together a service model that includes specific performance assurances has become a major technological problem that has caused widespread concern. Various strategies are used in the composition of services i.e., Clustering, Fuzzy, Deep Learning, Particle Swarm Optimization, Cuckoo Search Algorithm and so on. Researchers have made significant efforts in this field, and computational intelligence approaches are thought to be useful in tackling such challenges. Even though, no systematic research on this topic has been done with specific attention to computational intelligence. Therefore, this publication provides a thorough overview of QoS-aware web service composition, with QoS models and approaches to finding future aspects

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey
    corecore