210 research outputs found

    Review of Technological Processes at the Container Terminal

    Get PDF
    The aim of this paper work is to explore technological processes which occur on container terminal.Each of them represents a sort of a challenge for a manager of every port, who is responsible for a work organization. The way of running technological processes needs to be organized by minimizing the time ships spend on a dock, including balanced and economical use of port capacity as well as maximum flow of containers. Tracking efficiency of port capacities is shown on an example of container terminal of Rijeka port. By applying quantitative methods, queuing theory, it is been explored whether the capacity of container terminals satisfy existing trade as well as whether the same are sufficient for future increase of trade in terms of expansion of existing or better organization of technological processes

    Modelling Dry Port Systems in the Framework of Inland Waterway Container Terminals

    Get PDF
    Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities. The most efficient way of doing so is through intermodal transportation (IT). Current IT systems rely mostly on road, rail, and sea transport, not inland waterway transport. Developing dry port (DP) terminals has been proven as a sustainable means of promoting and utilizing IT in the hinterland of seaport container terminals. Conventional DP systems consolidate container flows from/to seaports and integrate road and rail transportation modes in the hinterland which improves the sustainability of the whole logistics system. In this article, to extend literature on the sustainable development of different categories of IT terminals, especially DPs, and their varying roles, we examine the possibility of developing DP terminals within the framework of inland waterway container terminals (IWCTs). Establishing combined roadā€“railā€“inland waterway transport for observed container flows is expected to make the IT systems sustainable. As such, this article is the first to address the modelling of such DP systems. After mathematically formulating the problem of modelling DP systems, which entailed determining the number and location of DP terminals for IWCTs, their capacity, and their allocation of container flows, we solved the problem with a hybrid metaheuristic model based on the Bee Colony Optimisation (BCO) algorithm and the measurement of alternatives and ranking according to compromise solution (i.e., MARCOS) multi-criteria decision-making method. The results from our case study of the Danube region suggest that planning and developing DP terminals in the framework of IWCTs can indeed be sustainable, as well as contribute to the development of logistics networks, the regionalisation of river ports, and the geographic expansion of their hinterlands. Thus, the main contributions of this article are in proposing a novel DP concept variant, mathematically formulating the problems of its modelling, and developing an encompassing hybrid metaheuristic approach for treating the complex nature of the problem adequately

    A Hybrid MCDM Approach to Transshipment Port Selection

    Get PDF
    Port selection is an intrinsic supply-chain problem that has substantial impact on development of local economies. Shipping business environment developed into complex system where decision making is derived from uncertain and incomplete data. In this study we present a conceptual integrated Multi-Criteria Decision solution to transshipment port selection problem based on Best-Worst MCDM and Artificial Bee Colony Algorithm. Through literature review and expert analysis, 50 relevant criteria have been identified as relevant to the transshipment port selection problem. Decision makers within liner shipping companies evaluate transshipment port selection criteria and establish ranking that is used to determine crisp solution with lowest consistency ratio. ABC based algorithm is used to reduce computational complexity and deliver a single optimal solution by solving both objective and constraint violation functions

    The Operational Planning Model of Transhipment Processes in the Port

    Get PDF
    Modelling of a traffic system refers to the efficiency of operations for establishing successful business performance by examining the possibilities for its improvement. The main purpose of each container terminal is to ensure continuity and dynamics of the flow of containers. The objective of this paper is to present a method for determining the amount of certain types of containers that can be transhipped at each berth, with the proper cargo handling, taking into account minimum total costs of transhipment. The mathematical model of planning the transhipment and transportation of containers at the terminal is presented. The optimal solution, obtained with the method of linear programming, represents a plan for container deployment that will ensure effective ongoing process of transhipment, providing the lowest transhipment costs. The proposed model, tested in the port of Rijeka, should be the basis for makingadequate business decisions in the operational planning of the container terminal.</p

    Studying the selection of ports on liner routes

    Get PDF

    Optimal Planning of Container Terminal Operations

    No full text
    Due to globalization and international trade, moving goods using a mixture of transportation modes has become a norm; today, large vessels transport 95% of the international cargos. In the first part of this thesis, the emphasis is on the sea-land intermodal transport. The availability of different modes of transportation (rail/road/direct) in sea-land intermodal transport and container flows (import, export, transhipment) through the terminal are considered simultaneously within a given planning time horizon. We have also formulated this problem as an Integer Programming (IP) model and the objective is to minimise storage cost, loading and transportation cost from/to the customers. To further understand the computational complexity and performance of the model, we have randomly generated a large number of test instances for extensive experimentation of the algorithm. Since, CPLEX was unable to find the optimal solution for the large test problems; a heuristic algorithm has been devised based on the original IP model to find near ā€žoptimalā€Ÿ solutions with a relative error of less than 4%. Furthermore, we developed and implemented Lagrangian Relaxation (LR) of the IP formulation of the original problem. The bounds derived from LR were improved using sub-gradient optimisation and computational results are presented. In the second part of the thesis, we consider the combined problems of container assignment and yard crane (YC) deployment within the container terminal. A new IP formulation has been developed using a unified approach with the view to determining optimal container flows and YC requirements within a given planning time horizon. We designed a Branch and Cut (B&C) algorithm to solve the problem to optimality which was computationally evaluated. A novel heuristic approach based on the IP formulation was developed and implemented in C++. Detailed computational results are reported for both the exact and heuristic algorithms using a large number of randomly generated test problems. A practical application of the proposed model in the context of a real case-study is also presented. Finally, a simulation model of container terminal operations based on discrete-event simulation has been developed and implemented with the view of validating the above optimisation model and using it as a test bed for evaluating different operational scenarios

    Software package applications for designing rail freight interchanges

    Get PDF
    Ph.D. ThesisRail freight transport has a crucial role to play in the economy, delivering significant reductions in logistics costs, pollution, and congestion. Typically, the conventional architecture and layout of the rail freight interchange constrain the capacity and performance of the whole railway system. A well-designed rail freight interchange can enhance the system performance by maximizing vehicle usage and minimizing last mile distribution cost. Therefore, the study of rail freight interchange operation is considered crucial to understand how to increase and improve the attractiveness for rail freight transport. This thesis uses game engines to develop software packages that are used for the design of new rail freight interchanges, considering multistakeholder decisions drivers. A novel and modular approach has been applied with the purpose of developing and deploying simulation tools that can be used by multiple stakeholders to: -Understand the impact of multiple-criteria decision analysis on rail freight interchange layouts; -Use a genetic algorithm to identify the most suitable components of the future interchange to be designed, considering the multi-stakeholdersā€™ priorities; - Quickly enable the design of a wide variety of rail freight interchanges from the information selected by a decision maker in a computer-based userfriendly interface. This research has proposed a framework for software development. Three case studies are used to illustrate adaptability of a number of applications for different scenarios. The findings of the research contribute to a better understanding of the impacts of the multiple stakeholderā€™s decisions on rail freight interchange designs. Key words: Rail Freight Interchanges, Multi stakeholders decision, genetic algorith
    • ā€¦
    corecore