5 research outputs found

    Applying generalized non deducibility on compositions (GNDC) approach in dependability

    Get PDF
    This paper presents a framework where dependable systems can be uniformly modeled and dependable properties analyzed within the Generalized Non Deducibility on Compositions (GNDC), a scheme that has been profitably used in definition and analysis of security properties. Precisely, our framework requires a systems to be modelled using a formal calculus, here the CCS process algebra, where both the failing behaviour of the system and the related fault-recovering procedures are also explicitly described. An environment able to inject any fault in the system is then defined as a separated component. The parallel composition between the system and the environment represents our scenario of analysis, where some fault tolerance property (e.g., fail stop, safe and silent) are studied as instances of GNDC properties. By using different instances of GNDC we are able to argue about the availability of effective methodologies of analysis, and on the possibility of applying compositional techniques

    Integration of analysis techniques in security and fault-tolerance

    Get PDF
    This thesis focuses on the study of integration of formal methodologies in security protocol analysis and fault-tolerance analysis. The research is developed in two different directions: interdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between strategies of analysis in security protocols and fault-tolerance; in the latter, we search for connections among different approaches of analysis within the security area. In the following we summarize the main results of the research
    corecore