11,073 research outputs found

    Lesion boundary segmentation using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We implement the level set using a fast upwind scheme and compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician marked-up boundaries as ground truth

    Model of cybersecurity means financing with the procedure of additional data obtaining by the protection side

    Get PDF
    The article describes the model of cybersecurity means financing strategies of the information object with incomplete information about the financial resources of the attacking side. The proposed model is the core of the module of the developed decision support system in the problems of choosing rational investing variants for information protection and cybersecurity of various information objects. The model allows to find financial solutions using the tools of the theory of multistep games with several terminal surfaces. The authors proposed an approach that allows information security management to make a preliminary assessment of strategies for financing the effective cybersecurity systems. The model is distinguished by the assumption that the protection side does not have complete information, both about the financing strategies of the attacking side, and about its financial resources state aimed at overcoming cybersecurity lines of the information object. At the same time, the protection side has the opportunity to obtain additional information by the part of its financial resources. This makes it possible for the protection side to obtain a positive result for itself in the case when it can not be received without this procedure. The solution was found using a mathematical apparatus of a nonlinear multistep quality game with several terminal surfaces with alternate moves. In order to verify the adequacy of the model there was implemented a multivariate computational experiment. The results of this experiment are described in the article. © 2005 - ongoing JATIT & LL

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Estimating ToE Risk Level using CVSS

    Get PDF
    Security management is about calculated risk and requires continuous evaluation to ensure cost, time and resource effectiveness. Parts of which is to make future-oriented, cost-benefit investments in security. Security investments must adhere to healthy business principles where both security and financial aspects play an important role. Information on the current and potential risk level is essential to successfully trade-off security and financial aspects. Risk level is the combination of the frequency and impact of a potential unwanted event, often referred to as a security threat or misuse. The paper presents a risk level estimation model that derives risk level as a conditional probability over frequency and impact estimates. The frequency and impact estimates are derived from a set of attributes specified in the Common Vulnerability Scoring System (CVSS). The model works on the level of vulnerabilities (just as the CVSS) and is able to compose vulnerabilities into service levels. The service levels define the potential risk levels and are modelled as a Markov process, which are then used to predict the risk level at a particular time

    Soft Constraint Programming to Analysing Security Protocols

    Full text link
    Security protocols stipulate how the remote principals of a computer network should interact in order to obtain specific security goals. The crucial goals of confidentiality and authentication may be achieved in various forms, each of different strength. Using soft (rather than crisp) constraints, we develop a uniform formal notion for the two goals. They are no longer formalised as mere yes/no properties as in the existing literature, but gain an extra parameter, the security level. For example, different messages can enjoy different levels of confidentiality, or a principal can achieve different levels of authentication with different principals. The goals are formalised within a general framework for protocol analysis that is amenable to mechanisation by model checking. Following the application of the framework to analysing the asymmetric Needham-Schroeder protocol, we have recently discovered a new attack on that protocol as a form of retaliation by principals who have been attacked previously. Having commented on that attack, we then demonstrate the framework on a bigger, largely deployed protocol consisting of three phases, Kerberos.Comment: 29 pages, To appear in Theory and Practice of Logic Programming (TPLP) Paper for Special Issue (Verification and Computational Logic
    corecore