38,571 research outputs found

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Safe abstractions of data encodings in formal security protocol models

    Get PDF
    When using formal methods, security protocols are usually modeled at a high level of abstraction. In particular, data encoding and decoding transformations are often abstracted away. However, if no assumptions at all are made on the behavior of such transformations, they could trivially lead to security faults, for example leaking secrets or breaking freshness by collapsing nonces into constants. In order to address this issue, this paper formally states sufficient conditions, checkable on sequential code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model, which takes into account a wide class of possible implementations of the encoding/decoding operations, is implied to be secure too under the same adversary model. The paper also indicates possible exploitations of this result in the context of methods based on formal model extraction from implementation code and of methods based on automated code generation from formally verified model

    Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation

    Get PDF
    This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled transition systems, and it is found in the literature in some slightly different variations. The second algorithm is based on the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of labelled transition systems to those systems that can always accept input actions. For these implementations a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists of implementation relations formalizing the notion of conformance of these implementations with respect to labelled transition system specifications, test cases and test suites, test execution, the notion of passing a test suite, and the test generation algorithm, which is proved to produce sound test suites for one of the implementation relations

    Crypto-Verifying Protocol Implementations in ML

    Get PDF
    We intend to narrow the gap between concrete implementations and verified models of cryptographic protocols. We consider protocols implemented in F#, a variant of ML, and verified using CryptoVerif, Blanchet's protocol verifier for computational cryptography. We experiment with compilers from F# code to CryptoVerif processes, and from CryptoVerif declarations to F# code. We present two case studies: an implementation of the Otway-Rees protocol, and an implementation of a simplified password-based authentication protocol. In both cases, we obtain concrete security guarantees for a computational model closely related to executable code

    Developing frameworks for protocol implementation

    Get PDF
    This paper presents a method to develop frameworks for protocol implementation. Frameworks are software structures developed for a specific application domain, which can be reused in the implementation of various different concrete systems in this domain. The use of frameworks support a protocol implementation process connected with formal design methods and produce an implementation code easy to extend and to reuse

    Hybrid Session Verification through Endpoint API Generation

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.This paper proposes a new hybrid session verification methodology for applying session types directly to mainstream languages, based on generating protocol-specific endpoint APIs from multiparty session types. The API generation promotes static type checking of the behavioural aspect of the source protocol by mapping the state space of an endpoint in the protocol to a family of channel types in the target language. This is supplemented by very light run-time checks in the generated API that enforce a linear usage discipline on instances of the channel types. The resulting hybrid verification guarantees the absence of protocol violation errors during the execution of the session. We implement our methodology for Java as an extension to the Scribble framework, and use it to specify and implement compliant clients and servers for real-world protocols such as HTTP and SMTP
    corecore