885 research outputs found

    Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    Get PDF
    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data

    Towards self-organized service-oriented multi-agent systems

    Get PDF
    The demand for large-scale systems running in complex and even chaotic environments requires the consideration of new paradigms and technologies that provide flexibility, robustness, agility and responsiveness. Multiagents systems is pointed out as a suitable approach to address this challenge by offering an alternative way to design control systems, based on the decentralization of control functions over distributed autonomous and cooperative entities. However, in spite of their enormous potential, they usually lack some aspects related to interoperability, optimization in decentralized structures and truly self-adaptation. This paper discusses a new perspective to engineer adaptive complex systems considering a 3-layer framework integrating several complementary paradigms and technologies. In a first step, it suggests the integration of multi-agent systems with service-oriented architectures to overcome the limitations of interoperability and smooth migration, followed by the use of technology enablers, such as cloud computing and wireless sensor networks, to provide a ubiquitous and reconfigurable environment. Finally, the resulted service-oriented multi-agent system should be enhanced with biologically inspired techniques, namely self-organization, to reach a truly robust, agile and adaptive system

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Risk of employing an evolvable production system

    Get PDF
    Nowadays manufacturing companies are facing a more challenging environment due to the unpredictability of the markets in order to survive. Enterprises need to keep innovating and deliver products with new internal or external characteristics. There are strategies and solutions, to different organisational level from strategic to operational, when technology is growing faster in operational level, more specifically in manufacturing system. This means that companies have to deal with the changes of the emergent manufacturing systems while it can be expensive and not easy to be implement. An agile manufacturing system can help to cope with the markets changeability. Evolvable Production Systems (EPS) is an emergent paradigm which aims to bring new solutions to deal with changeability. The proposed paradigm is characterised by modularity and intends to introduce high flexibility and dynamism at shop floor level through the use of the evolution of new computational devices and technology. This new approach brings to enterprises the ability to plug and unplug new devices and allowing fast reformulation of the production line without reprogramming. There is no doubt about the advantages and benefits of this emerging technology but the feasibility and applicability is still under questioned. Most researches in this area are focused on technical side, explaining the advantages of those systems while there are no sufficient works discussing the implementation risks from different perspective, including business owner. The main objective of this work is to propose a methodology and model to identify, classify and measure potential risk associated with an implementation of this emergent paradigm. To quantify the proposed comprehensive risk model, an Intelligent Decision system is developed employing Fuzzy Inference System to deal with the knowledge of experts, as there are no historical data and sufficient research on this area. The result can be the vulnerability assessment of implementing EPS technology in manufacturing companies when the focus is more on SMEs. The present dissertation used the experts’ knowledge and experiences, who were involved in FP7 project IDEAS, which is one of the leading projects in this area

    Dpws middleware to support agent-based manufacturing control and simulation

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresIn present manufacturing systems, the current challenge is the development of highly reconfigurable, truly distributed solutions. The tendency is to build manufacturing systems with autonomous, intelligent and distributed components that will support reconfiguration and adaptability. The most promising paradigms for the implementation of such systems are multi-agents and service oriented architectures (SOA), mainly over the DPWS (Device Profile for Web Services) implementation which was aimed at devices. An important limitation of most current multi-agent systems is that the management system is not totally distributed. Failure in the agent responsible for the registry can overthrow the entire system. DPWS does not have this limitation, since the management system is totally distributed. However, DPWS does not support agent autonomy notions as efficiently. The possibility of creating a truly distributed multi-agent system by linking both approaches led to this thesis. A Middleware layer was developed that enables agents to benefit from DPWS functionalities in order to reach the proposed goal. This middleware layer joins agents, databases, hardware, simulators, human interface applications such as production system management, error correction and maintenance, etc. To prove this concept a 3D model of an agent controlled manufacturing system with transporters augmented with DPWS communication interfaces was developed

    From evolutionary computation to the evolution of things

    Get PDF
    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems
    corecore