1,335 research outputs found

    A fuzzy dynamic inoperability input-output model for strategic risk management in global production networks

    Get PDF
    Strategic decision making in Global Production Networks (GPNs) is quite challenging, especially due to the unavailability of precise quantitative knowledge, variety of relevant risk factors that need to be considered and the interdependencies that can exist between multiple partners across the globe. In this paper, a risk evaluation method for GPNs based on a novel Fuzzy Dynamic Inoperability Input Output Model (Fuzzy DIIM) is proposed. A fuzzy multi-criteria approach is developed to determine interdependencies between nodes in a GPN using experts’ knowledge. An efficient and accurate method based on fuzzy interval calculus in the Fuzzy DIIM is proposed. The risk evaluation method takes into account various risk scenarios relevant to the GPN and likelihoods of their occurrences. A case of beverage production from food industry is used to showcase the application of the proposed risk evaluation method. It is demonstrated how it can be used for GPN strategic decision making. The impact of risk on inoperability of alternative GPN configurations considering different risk scenarios is analysed

    An investigation into the use of neural networks for the prediction of the stock exchange of Thailand

    Get PDF
    Stock markets are affected by many interrelated factors such as economics and politics at both national and international levels. Predicting stock indices and determining the set of relevant factors for making accurate predictions are complicated tasks. Neural networks are one of the popular approaches used for research on stock market forecast. This study developed neural networks to predict the movement direction of the next trading day of the Stock Exchange of Thailand (SET) index. The SET has yet to be studied extensively and research focused on the SET will contribute to understanding its unique characteristics and will lead to identifying relevant information to assist investment in this stock market. Experiments were carried out to determine the best network architecture, training method, and input data to use for this task. With regards network architecture, feedforward networks with three layers were used - an input layer, a hidden layer and an output layer - and networks with different numbers of nodes in the hidden layers were tested and compared. With regards training method, neural networks were trained with back-propagation and with genetic algorithms. With regards input data, three set of inputs, namely internal indicators, external indicators and a combination of both were used. The internal indicators are based on calculations derived from the SET while the external indicators are deemed to be factors beyond the control of the Thailand such as the Down Jones Index

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)

    Symmetric and Asymmetric Data in Solution Models

    Get PDF
    This book is a Printed Edition of the Special Issue that covers research on symmetric and asymmetric data that occur in real-life problems. We invited authors to submit their theoretical or experimental research to present engineering and economic problem solution models that deal with symmetry or asymmetry of different data types. The Special Issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, seventeen papers were accepted and published. The authors proposed different solution models, mainly covering uncertain data in multicriteria decision-making (MCDM) problems as complex tools to balance the symmetry between goals, risks, and constraints to cope with the complicated problems in engineering or management. Therefore, we invite researchers interested in the topics to read the papers provided in the book

    The Impact of Artificial Intelligence on Strategic and Operational Decision Making

    Get PDF
    openEffective decision making lies at the core of organizational success. In the era of digital transformation, businesses are increasingly adopting data-driven approaches to gain a competitive advantage. According to existing literature, Artificial Intelligence (AI) represents a significant advancement in this area, with the ability to analyze large volumes of data, identify patterns, make accurate predictions, and provide decision support to organizations. This study aims to explore the impact of AI technologies on different levels of organizational decision making. By separating these decisions into strategic and operational according to their properties, the study provides a more comprehensive understanding of the feasibility, current adoption rates, and barriers hindering AI implementation in organizational decision making

    A Model for Stock Price Prediction Using the Soft Computing Approach

    Get PDF
    A number of research efforts had been devoted to forecasting stock price based on technical indicators which rely purely on historical stock price data. However, the performances of such technical indicators have not always satisfactory. The fact is, there are other influential factors that can affect the direction of stock market which form the basis of market experts’ opinion such as interest rate, inflation rate, foreign exchange rate, business sector, management caliber, investors’ confidence, government policy and political effects, among others. In this study, the effect of using hybrid market indicators such as technical and fundamental parameters as well as experts’ opinions for stock price prediction was examined. Values of variables representing these market hybrid indicators were fed into the artificial neural network (ANN) model for stock price prediction. The empirical results obtained with published stock data show that the proposed model is effective in improving the accuracy of stock price prediction. Also, the performance of the neural network predictive model developed in this study was compared with the conventional Box-Jenkins autoregressive integrated moving average (ARIMA) model which has been widely used for time series forecasting. Our findings revealed that ARIMA models cannot be effectively engaged profitably for stock price prediction. It was also observed that the pattern of ARIMA forecasting models were not satisfactory. The developed stock price predictive model with the ANN-based soft computing approach demonstrated superior performance over the ARIMA models; indeed, the actual and predicted value of the developed stock price predictive model were quite close

    Artificial Intelligence Applied to Supply Chain Management and Logistics: Systematic Literature Review

    Get PDF
    The growing impact of automation and artificial intelligence (AI) on supply chain management and logistics is remarkable. This technological advance has the potential to significantly transform the handling and transport of goods. The implementation of these technologies has boosted efficiency, predictive capabilities and the simplification of operations. However, it has also raised critical questions about AI-based decision-making. To this end, a systematic literature review was carried out, offering a comprehensive view of this phenomenon, with a specific focus on management. The aim is to provide insights that can guide future research and decision-making in the logistics and supply chain management sectors. Both the articles in this thesis and that form chapters present detailed methodologies and transparent results, reinforcing the credibility of the research for researchers and managers. This contributes to a deeper understanding of the impact of technology on logistics and supply chain management. This research offers valuable information for both academics and professionals in the logistics sector, revealing innovative solutions and strategies made possible by automation. However, continuous development requires vigilance, adaptation, foresight and a rapid problem-solving capacity. This research not only sheds light on the current panorama, but also offers a glimpse into the future of logistics in a world where artificial intelligence is set to prevail
    • …
    corecore