3,788 research outputs found

    Defect cluster recognition system for fabricated semiconductor wafers

    Get PDF
    The International Technology Roadmap for Semiconductors (ITRS) identifies production test data as an essential element in improving design and technology in the manufacturing process feedback loop. One of the observations made from the high-volume production test data is that dies that fail due to a systematic failure have a tendency to form certain unique patterns that manifest as defect clusters at the wafer level. Identifying and categorising such clusters is a crucial step towards manufacturing yield improvement and implementation of real-time statistical process control. Addressing the semiconductor industry's needs, this research proposes an automatic defect cluster recognition system for semiconductor wafers that achieves up to 95% accuracy (depending on the product type)

    Analysing business processes to manage and resolve strategic issues in a manufacturing business

    Get PDF
    This paper demonstrates the value of applying heuristics to knowledge systems of business processes in a manufacturing company to resolve strategic issues and enable the attainment of strategic business goals. The manufacturing company was losing market share through not being able to get its new products to market quickly enough. The research illustrates the &lsquo;location&rsquo; and use of information systems in a manufacturing context. The researchers collected the specific business process knowledge in the company and developed a knowledge management system and then applied heuristics to the &lsquo;AS IS&rsquo; manufacturing process to determine better models of manufacturing that would enable faster to market product development and thus enable better strategic alignment between company expectations and realisation of market share. The paper highlights the strategic use of information systems as a means of directly solving business problems.<br /

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    Prediction of Tool Recipe Runtimes in Semiconductor Manufacturing

    Get PDF
    To improve throughput, due date adherence, or tool usage in semiconductor manufacturing, it is crucial to model the duration of individual processes such as coating, diffusion, or etching. Equipped with such data, production planning can develop dispatch schemes and schedules for optimized material routing. However, just a few tools indicate how long a process will take. Many variables affect the runtime of tool recipes that are used to realize processes. These variables include wafer processing mode, historical context, batch size, and job handling. In this thesis, a model that allows inferring tool recipe runtimes with adequate accuracy shall be developed. Firstly, predictive models shall be built for selected tools with known runtime behavior to establish a baseline for the methodology. Tools will be selected to cover a broad spectrum of processing modalities. The main predictors will be revealed using variable importance analysis. Furthermore, the analysis shall reveal under which conditions recipe runtime modeling is most accurate. Secondly, a generic approach shall be created to model recipe runtime. By accounting for tool, process, and material context, methods would be investigated from feature selection and automatic model selection. Finally, a pipeline for data cleansing, feature engineering, model building, and metrics will be developed using historical data from a wide range of factory data sources. Finally, a scheme to operationalize the findings shall be outlined. In particular, this requires establishing model serving to enable consumption in applications such as dispatching or operator interfaces

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    Bidirectional deep-readout echo state networks

    Full text link
    We propose a deep architecture for the classification of multivariate time series. By means of a recurrent and untrained reservoir we generate a vectorial representation that embeds temporal relationships in the data. To improve the memorization capability, we implement a bidirectional reservoir, whose last state captures also past dependencies in the input. We apply dimensionality reduction to the final reservoir states to obtain compressed fixed size representations of the time series. These are subsequently fed into a deep feedforward network trained to perform the final classification. We test our architecture on benchmark datasets and on a real-world use-case of blood samples classification. Results show that our method performs better than a standard echo state network and, at the same time, achieves results comparable to a fully-trained recurrent network, but with a faster training

    Data Mining Industrial Applications

    Get PDF

    Evaluation of solar cells and arrays for potential solar power satellite applications

    Get PDF
    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program
    corecore