708 research outputs found

    Broadcasting Protocol for Effective Data Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    VANET topology is very dynamic due to frequent movements of the nodes. Using beacon information connected dominated set are formed and nodes further enhanced with neighbor elimination scheme. With acknowledgement the inter section issues are solve. A modified Broadcast Conquest and Delay De-synchronization mechanism address the broadcasting storm issues. Although data dissemination is possible in all direction, the performance of data dissemination in the opposite direction is investigated and compared against the existing protocols

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Auro: Adaptive Unicast Routing Framework for Vehicular Ad Hoc Network

    Get PDF
    A special type of Mobile Ad hoc network (MANET) is Vehicular Ad hoc Network (VANET) and it provides exchange of messages between vehicles. VANET encourages researchers to create safety and comfort applications that will lead to Intelligent Transport Systems (ITS). Link failure in the routing path occurs due to frequent change in the network topology of VANET. To handle this situation, the routing protocol has to initiate either a local repair of route or find a route by broadcasting control overhead packets. This increases the network bandwidth utilization of the VANET. When the number of vehicles increase in VANET, broadcasting of redundant route repair packets increases the collisions in the medium leading to broadcasting storm problem. This paper proposes an Adaptive Unicast ROuting (AURO) framework to address frequent disconnections and broadcast storm problems in VANET. This framework selects suitable protocol from the three unicast routing protocols namely On-demand Proactive with Route Maintenance Protocol (ORPM), Efficient Reactive routing Protocol (ERP) and Stable Routing Protocol (SRP) from the network context and the user requirements. The proposed AURO framework is implemented using NS2 and SUMO simulators. The performance of these protocols were thoroughly analyzed and compared with existing popular protocols

    Reliable Message Dissemination in Mobile Vehicular Networks

    Full text link
    Les réseaux véhiculaires accueillent une multitude d’applications d’info-divertissement et de sécurité. Les applications de sécurité visent à améliorer la sécurité sur les routes (éviter les accidents), tandis que les applications d’info-divertissement visent à améliorer l'expérience des passagers. Les applications de sécurité ont des exigences rigides en termes de délais et de fiabilité ; en effet, la diffusion des messages d’urgence (envoyés par un véhicule/émetteur) devrait être fiable et rapide. Notons que, pour diffuser des informations sur une zone de taille plus grande que celle couverte par la portée de transmission d’un émetteur, il est nécessaire d’utiliser un mécanisme de transmission multi-sauts. De nombreuses approches ont été proposées pour assurer la fiabilité et le délai des dites applications. Toutefois, ces méthodes présentent plusieurs lacunes. Cette thèse, nous proposons trois contributions. La première contribution aborde la question de la diffusion fiable des messages d’urgence. A cet égard, un nouveau schéma, appelé REMD, a été proposé. Ce schéma utilise la répétition de message pour offrir une fiabilité garantie, à chaque saut, tout en assurant un court délai. REMD calcule un nombre optimal de répétitions en se basant sur l’estimation de la qualité de réception de lien dans plusieurs locations (appelées cellules) à l’intérieur de la zone couverte par la portée de transmission de l’émetteur. REMD suppose que les qualités de réception de lien des cellules adjacentes sont indépendantes. Il sélectionne, également, un nombre de véhicules, appelés relais, qui coopèrent dans le contexte de la répétition du message d’urgence pour assurer la fiabilité en multi-sauts. La deuxième contribution, appelée BCRB, vise à améliorer REMD ; elle suppose que les qualités de réception de lien des cellules adjacentes sont dépendantes ce qui est, généralement, plus réaliste. BCRB utilise les réseaux Bayésiens pour modéliser les dépendances en vue d’estimer la qualité du lien de réception avec une meilleure précision. La troisième contribution, appelée RICS, offre un accès fiable à Internet. RICS propose un modèle d’optimisation, avec une résolution exacte optimale à l'aide d’une technique de réduction de la dimension spatiale, pour le déploiement des passerelles. Chaque passerelle utilise BCRB pour établir une communication fiable avec les véhicules.Vehicular networks aim to enable a plethora of safety and infotainment applications. Safety applications aim to preserve people's lives (e.g., by helping in avoiding crashes) while infotainment applications focus on enhancing the passengers’ experience. These applications, especially safety applications, have stringent requirements in terms of reliability and delay; indeed, dissemination of an emergency message (e.g., by a vehicle/sender involved in a crash) should be reliable while satisfying short delay requirements. Note, that multi-hop dissemination is needed to reach all vehicles, in the target area, that may be outside the transmission range of the sender. Several schemes have been proposed to provide reliability and short delay for vehicular applications. However, these schemes have several limitations. Thus, the design of new solutions, to meet the requirement of vehicular applications in terms of reliability while keeping low end-to-end delay, is required. In this thesis, we propose three schemes. The first scheme is a multi-hop reliable emergency message dissemination scheme, called REMD, which guarantees a predefined reliability , using message repetitions/retransmissions, while satisfying short delay requirements. It computes an optimal number of repetitions based on the estimation of link reception quality at different locations (called cells) in the transmission range of the sender; REMD assumes that link reception qualities of adjacent cells are independent. It also adequately selects a number of vehicles, called forwarders, that cooperate in repeating the emergency message with the objective to satisfy multi-hop reliability requirements. The second scheme, called BCRB, overcomes the shortcoming of REMD by assuming that link reception qualities of adjacent cells are dependent which is more realistic in real-life scenarios. BCRB makes use of Bayesian networks to model these dependencies; this allows for more accurate estimation of link reception qualities leading to better performance of BCRB. The third scheme, called RICS, provides internet access to vehicles by establishing multi-hop reliable paths to gateways. In RICS, the gateway placement is modeled as a k-center optimisation problem. A space dimension reduction technique is used to solve the problem in exact time. Each gateway makes use of BCRB to establish reliable communication paths to vehicles

    Topology design for time-varying networks

    Get PDF
    Traditional wireless networks seek to support end-to-end communication through either a single-hop wireless link to infrastructure or multi-hop wireless path to some destination. However, in some wireless networks (such as delay tolerant networks, or mobile social networks), due to sparse node distribution, node mobility, and time-varying network topology, end-to-end paths between the source and destination are not always available. In such networks, the lack of continuous connectivity, network partitioning, and long delays make design of network protocols very challenging. Previous DTN or time-varying network research mainly focuses on routing and information propagation. However, with large number of wireless devices' participation, and a lot of network functionality depends on the topology, how to maintain efficient and dynamic topology of a time-varying network becomes crucial. In this dissertation, I model a time-evolving network as a directed time-space graph which includes both spacial and temporal information of the network, then I study various topology control problems with such time-space graphs. First, I study the basic topology design problem where the links of the network are reliable. It aims to build a sparse structure from the original time-space graph such that (1) the network is still connected over time and/or supports efficient routing between any two nodes; (2) the total cost of the structure is minimized. I first prove that this problem is NP-hard, and then propose several greedy-based methods as solutions. Second, I further study a cost-efficient topology design problem, which not only requires the above two objective, but also guarantees that the spanning ratio of the topology is bounded by a given threshold. This problem is also NP-hard, and I give several greedy algorithms to solve it. Last, I consider a new topology design problem by relaxing the assumption of reliable links. Notice that in wireless networks the topologies are not quit predictable and the links are often unreliable. In this new model, each link has a probability to reflect its reliability. The new reliable topology design problem aims to build a sparse structure from the original space-time graph such that (1) for any pair of devices, there is a space-time path connecting them with the reliability larger than a required threshold; (2) the total cost of the structure is minimized. Several heuristics are proposed, which can significantly reduce the total cost of the topology while maintain the connectivity or reliability over time. Extensive simulations on both random networks and real-life tracing data have been conducted, and results demonstrate the efficiency of the proposed methods

    A scalable data dissemination protocol for both highway and urban vehicular environments

    Get PDF
    Vehicular ad hoc networks (VANETs) enable the timely broadcast dissemination of event-driven messages to interested vehicles. Especially when dealing with broadcast communication, data dissemination protocols must achieve a high degree of scalability due to frequent deviations in the network density. In dense networks, suppression techniques are designed to prevent the so-called broadcast storm problem. In sparse networks, protocols incorporate store-carry-forward mechanisms to take advantage of the mobility of vehicles to store and relay messages until a new opportunity for dissemination emerges. Despite numerous efforts, most related works focus on either highway or urban scenarios, but not both. Highways are mostly addressed with a single directional dissemination. For urban scenarios, protocols mostly concentrate on either using infrastructure or developing methods for selecting vehicles to perform the store-carry-forward task. In both cases, dense networks are dealt with suppression techniques that are not optimal for multi-directional dissemination. To fill this gap, we present an infrastructure-less protocol that combines a generalized time slot scheme based on directional sectors and a store-carry-forward algorithm to support multi-directional data dissemination. By means of simulations, we show that our protocol scales properly in various network densities in both realistic highway and urban scenarios. Most importantly, it outperforms state-of-the-art protocols in terms of delivery ratio, end-to-end delay, and number of transmissions. Compared to these solutions, our protocol presents up to seven times lower number of transmissions in dense highway scenarios

    AN ADAPTIVE INFORMATION DISSEMINATION MODEL FOR VANET COMMUNICATION

    Get PDF
    Vehicular ad hoc networks (VANETs) have been envisioned to be useful in road safety and many commercial applications. The growing trend to provide communication among the vehicles on the road has provided the opportunities for developing a variety of applications for VANET. The unique characteristics of VANET bring about new research challenges

    Probabilistic route discovery for Wireless Mobile Ad Hoc Networks (MANETs)

    Get PDF
    Mobile wireless ad hoc networks (MANETs) have become of increasing interest in view of their promise to extend connectivity beyond traditional fixed infrastructure networks. In MANETs, the task of routing is distributed among network nodes which act as both end points and routers in a wireless multi-hop network environment. To discover a route to a specific destination node, existing on-demand routing protocols employ a broadcast scheme referred to as simple flooding whereby a route request packet (RREQ) originating from a source node is blindly disseminated to the rest of the network nodes. This can lead to excessive redundant retransmissions, causing high channel contention and packet collisions in the network, a phenomenon called a broadcast storm. To reduce the deleterious impact of flooding RREQ packets, a number of route discovery algorithms have been suggested over the past few years based on, for example, location, zoning or clustering. Most such approaches however involve considerably increased complexity requiring additional hardware or the maintenance of complex state information. This research argues that such requirements can be largely alleviated without sacrificing performance gains through the use of probabilistic broadcast methods, where an intermediate node rebroadcasts RREQ packets based on some suitable forwarding probability rather than in the traditional deterministic manner. Although several probabilistic broadcast algorithms have been suggested for MANETs in the past, most of these have focused on “pure” broadcast scenarios with relatively little investigation of the performance impact on specific applications such as route discovery. As a consequence, there has been so far very little study of the performance of probabilistic route discovery applied to the well-established MANET routing protocols. In an effort to fill this gap, the first part of this thesis evaluates the performance of the routing protocols Ad hoc On demand Distance Vector (AODV) and Dynamic Source Routing (DSR) augmented with probabilistic route discovery, taking into account parameters such as network density, traffic density and nodal mobility. The results reveal encouraging benefits in overall routing control overhead but also show that network operating conditions have a critical impact on the optimality of the forwarding probabilities. In most existing probabilistic broadcast algorithms, including the one used here for preliminary investigations, each forwarding node is allowed to rebroadcast a received packet with a fixed forwarding probability regardless of its relative location with respect to the locations of the source and destination pairs. However, in a route discovery operation, if the location of the destination node is known, the dissemination of the RREQ packets can be directed towards this location. Motivated by this, the second part of the research proposes a probabilistic route discovery approach that aims to reduce further the routing overhead by limiting the dissemination of the RREQ packets towards the anticipated location of the destination. This approach combines elements of the fixed probabilistic and flooding-based route discovery approaches. The results indicate that in a relatively dense network, these combined effects can reduce the routing overhead very significantly when compared with that of the fixed probabilistic route discovery. Typically in a MANET there are regions of varying node density. Under such conditions, fixed probabilistic route discovery can suffer from a degree of inflexibility, since every node is assigned the same forwarding probability regardless of local conditions. Ideally, the forwarding probability should be high for a node located in a sparse region of the network while relatively lower for a node located in a denser region of the network. As a result, it can be helpful to identify and categorise mobile nodes in the various regions of the network and appropriately adjust their forwarding probabilities. To this end the research examines probabilistic route discovery methods that dynamically adjust the forwarding probability at a node, based on local node density, which is estimated using number of neighbours as a parameter. Results from this study return significantly superior performance measures compared with fixed probabilistic variants. Although the probabilistic route discovery methods suggested above can significantly reduce the routing control overhead without degrading the overall network throughput, there remains the problem of how to select efficiently forwarding probabilities that will optimize the performance of a broadcast under any given conditions. In an attempt to address this issue, the final part of this thesis proposes and evaluates the feasibility of a node estimating its own forwarding probability dynamically based on locally collected information. The technique examined involves each node piggybacking a list of its 1-hop neighbours in its transmitted RREQ packets. Based on this list, relay nodes can determine the number of neighbours that have been already covered by a broadcast and thus compute the forwarding probabilities most suited to individual circumstances

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed
    • …
    corecore