2,540 research outputs found

    A Mechanism Design Approach to Bandwidth Allocation in Tactical Data Networks

    Get PDF
    The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems\u27. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today\u27s software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest to the defense community. In this thesis, we consider a scenario where a number of military platforms have been tasked with the goal of detecting and tracking targets. The sensors onboard a military platform have a partial and inaccurate view of the operating picture and need to make use of data transmitted from neighboring sensors in order to improve the accuracy of their own measurements. The communication takes place over tactical data networks with scarce bandwidth. The problem is compounded by the possibility that the local goals of military platforms might not be aligned with the global system goal. Such a scenario might occur in multi-flag, multi-platform military exercises, where the military commanders of each platform are more concerned with the well-being of their own platform over others. Therefore there is a need to design a mechanism that efficiently allocates the flow of data within the network to ensure that the resulting global performance maximizes the information gain of the entire system, despite the self-interested actions of the individual actors. We propose a two-stage mechanism based on modified strictly-proper scoring rules, with unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions and the center does not have to rely on knowledge of the actual outcome when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the uncertainty in the operating environment. We apply our robust optimization - based scoring rules algorithm to an agent-based model framework of the combat tactical data network, and analyze the results obtained. Through the work we hope to demonstrate how mechanism design, perched at the intersection of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS system paradigm - challenges not amenable to traditional system engineering approaches

    Real Time Information Fusion in Military Systems

    Get PDF
    With the proliferation of sensors on platforms like battle ships and aircraft, the information to be handled by the battlefield commanders has significantly increased in the recent time. From a deluge of information flowing from sensors, the battlefield commander is required to make situation assessment in real-time and take appropriate action. Recent studies by cognitive scientists have indicated that decision making by individuals as well as a team suffer from several biases. For these two reasons, the battlefield commanders need assistance of real-time information fusion systems to take objective assessment of highly dynamic battle situation in real-time information fusion systems to take objective assessment of a highly dynamic battle situation in real-time. The real-time information fusion systems at a single platform level as well as that applicable for geographically distributed platforms is discussed in detail in this paper. It was concluded that by carrying out these activities at the platform level as well as at 'global' level involving several platforms, the limitations in performance of any sensor due to propagation effects or due to enemy counter measures can be significantly minimised or totally eliminated. At the same time the functional effectiveness of each sensor onboard different platforms, becomes better than when it had to operate autonomously within the real-time information fusion facility. By carrying out global real-time information fusion activity in a theatre of war, all the platforms operating in the area will have the benefit of the best sensor in that area on each aspect of the capability. A few examples of real-time information fusion system are also discussed

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    EVALUATING ARTIFICIAL INTELLIGENCE METHODS FOR USE IN KILL CHAIN FUNCTIONS

    Get PDF
    Current naval operations require sailors to make time-critical and high-stakes decisions based on uncertain situational knowledge in dynamic operational environments. Recent tragic events have resulted in unnecessary casualties, and they represent the decision complexity involved in naval operations and specifically highlight challenges within the OODA loop (Observe, Orient, Decide, and Assess). Kill chain decisions involving the use of weapon systems are a particularly stressing category within the OODA loop—with unexpected threats that are difficult to identify with certainty, shortened decision reaction times, and lethal consequences. An effective kill chain requires the proper setup and employment of shipboard sensors; the identification and classification of unknown contacts; the analysis of contact intentions based on kinematics and intelligence; an awareness of the environment; and decision analysis and resource selection. This project explored the use of automation and artificial intelligence (AI) to improve naval kill chain decisions. The team studied naval kill chain functions and developed specific evaluation criteria for each function for determining the efficacy of specific AI methods. The team identified and studied AI methods and applied the evaluation criteria to map specific AI methods to specific kill chain functions.Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCaptain, United States Marine CorpsCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Knowledge visualizations: a tool to achieve optimized operational decision making and data integration

    Get PDF
    The overabundance of data created by modern information systems (IS) has led to a breakdown in cognitive decision-making. Without authoritative source data, commanders’ decision-making processes are hindered as they attempt to paint an accurate shared operational picture (SOP). Further impeding the decision-making process is the lack of proper interface interaction to provide a visualization that aids in the extraction of the most relevant and accurate data. Utilizing the DSS to present visualizations based on OLAP cube integrated data allow decision-makers to rapidly glean information and build their situation awareness (SA). This yields a competitive advantage to the organization while in garrison or in combat. Additionally, OLAP cube data integration enables analysis to be performed on an organization’s data-flows. This analysis is used to identify the critical path of data throughout the organization. Linking a decision-maker to the authoritative data along this critical path eliminates the many decision layers in a hierarchal command structure that can introduce latency or error into the decision-making process. Furthermore, the organization has an integrated SOP from which to rapidly build SA, and make effective and efficient decisions.http://archive.org/details/knowledgevisuali1094545877Outstanding ThesisOutstanding ThesisMajor, United States Marine CorpsCaptain, United States Marine CorpsApproved for public release; distribution is unlimited
    • …
    corecore