105 research outputs found

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Bridging the gap: a standards-based approach to OR/MS distributed simulation

    Get PDF
    Pre-print version. Final version published in ACM Transactions on Modeling and Computer Simulation (TOMACS); available online at http://tomacs.acm.org/In Operations Research and Management Science (OR/MS), Discrete Event Simulation (DES) models are typically created using commercial simulation packages such as Simul8™ and SLX™. A DES model represents the processes associated with a system of interest; but, in cases where the underlying system is large and/or logically divided, the system may be conceptualized as several sub-systems. These sub-systems may belong to multiple stakeholders, and creating an all-encompassing DES model may be difficult for reasons such as, concerns among the intra- and inter-organizational stakeholders with regard to data/information sharing (e.g., security and privacy). Furthermore, issues such as model composability, data transfer/access problems and execution speed may also make a single model approach problematic. A potential solution could be to create/reuse well-defined DES models, each modeling the processes associated with one sub-system, and using distributed simulation technique to execute the models as a unified whole. Although this approach holds great promise, there are technical barriers. One such barrier is the lack of common ground between distributed simulation developers and simulation practitioners. In an attempt to bridge this gap, this paper reports on the outcome of an international standardization effort, the SISO-STD-006-2010 Standard for Commercial-Off-The-Shelf Simulation Package Interoperability References Models (IRMs). This facilitates the capture of interoperability requirements at a modeling level rather than a technical level and enables simulation practitioners and vendors to properly specify the interoperability requirements of a distributed simulation in their terms. Two distributed simulation examples are given to illustrate the use of IRMs

    HLA-CSPIF panel on commercial off-the-shelf distributed simulation

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages are widely used in many areas of industry. Several research groups are attempting to integrate distributed simulation principles and techniques with these packages to potentially give us COTS distributed simulation. The High Level Architecture-COTS Simulation Package Interoperation Forum (HLA-CSPIF) is a group of researchers and practitioners that are studying methodological and technological issues in this area. This panel paper presents the views of four members of this forum on the technical problems that must be overcome for this emerging field to be realized

    STRENGTHENING REGIONAL COOPERATION IN FISHERIES DATA COLLECTION

    Get PDF
    fishPi was a research project with the aim of “Strengthening regional cooperation in the area of fisheries data collection”. The project brought together over 40 experts from 13 scientific institutes in 12 countries (10 member states (MS)) and two internationally recognised survey design experts. It was funded by EU MARE grant MARE/2014/19, with a 14 month timeline commencing in April 2015. This project has trialled the way sampling designs would be developed in a regional setting and showed that collaboration and consultation is required at face to face meetings through regional groups that focus on a particular group of fisheries. The project was the first step in this process and one of the main outcomes is the framework to take the process forward; developing data formats, data sharing agreements and easily accessible software for data sharing, checking and analysis, and for the simulation testing of sampling designs.European Unio

    A distributed simulation methodological framework for OR/MS applications

    Get PDF
    Distributed Simulation (DS) allows existing models to be composed together to form sim- ulations of large-scale systems, or large models to be divided into models that execute on separate computers. Among its claimed benefits are model reuse, speedup, data pri- vacy and data consistency. DS is arguably widely used in the defence sector. However, it is rarely used in Operations Research and Management Science (OR/MS) applications in areas such as manufacturing and healthcare, despite its potential advantages. The main barriers to use DS in OR/MS are the technical complexity in implementation and a gap between the world views of DS and OR/MS communities. In this paper, we propose a new method that attempts to link together the methodological practices of OR/MS and DS. Using a rep- resentative case study, we show that our methodological framework simplifies significantly DS implementation.This research was funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), an Innova- tive Manufacturing Research Centre (IMRC) funded by the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/F063822/1 )

    A distributed simulation methodological framework for OR/MS applications

    Get PDF
    Distributed Simulation (DS) allows existing models to be composed together to form sim- ulations of large-scale systems, or large models to be divided into models that execute on separate computers. Among its claimed benefits are model reuse, speedup, data pri- vacy and data consistency. DS is arguably widely used in the defence sector. However, it is rarely used in Operations Research and Management Science (OR/MS) applications in areas such as manufacturing and healthcare, despite its potential advantages. The main barriers to use DS in OR/MS are the technical complexity in implementation and a gap between the world views of DS and OR/MS communities. In this paper, we propose a new method that attempts to link together the methodological practices of OR/MS and DS. Using a rep- resentative case study, we show that our methodological framework simplifies significantly DS implementation.This research was funded by the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH), an Innova- tive Manufacturing Research Centre (IMRC) funded by the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/F063822/1 )
    corecore