3,098 research outputs found

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    ERAM2 - ENERGY BASED RESOURCE ALLOCATION WITH MINIMUM RECKON AND MAXIMUM RECKON

    Get PDF
    The emerging field of cloud computing has flexibility and dominant computational architecture that offers ubiquitous services to users. It is different from traditional architecture because it accommodates resources in a unified way. Due to rapid growth in demands for providing the resources and computation in cloud environments, Resource allocation is considered as primary issues in performance, efficiency, and cost.  For the provisioning of resource, Virtual Machine (VMs) is employed to reduce the response time and executing the tasks according to the available resources.  The users utilize the VMs based on the characteristics of the tasks for effective usage of resources. This helps in load balancing and avoids VMs being in an idle state. Several resource allocation techniques are proposed to maximize the utility of physical resource and minimize the consuming cost of Virtual Machines (VMs). This paper proposes an Energy-Based Resource Allocation with Minimum Reckon and Maximum Reckon (ERAM2); which achieves an efficient scheduling by matching the user tasks on Resource parameters like Accessibility, Availability, Cost, Reliability, Reputation, Response time, Scalability and Throughput in the terms of Maximum Reckon and Minimum Reckon. This paper proposes an Ant Colony - Maximum Reckon and Minimum Reckon (AC-MRMR) method to consolidate all the available resource based on the pheromone value; the score is calculated for each pheromone value. When the score value exceeds Threshold limit then task migration process is carried out for optimized resource allocation of tasks

    Energy Aware Resource Allocation for Clouds Using Two Level Ant Colony Optimization

    Get PDF
    In cloud environment resources are dynamically allocated, adjusted, and deallocated. When to allocate and how many resources to allocate is a challenging task. Resources allocated optimally and at the right time not only improve the utilization of resources but also increase energy efficiency, provider's profit and customers' satisfaction. This paper presents ant colony optimization (ACO) based energy aware solution for resource allocation problem. The proposed energy aware resource allocation (EARA) methodology strives to optimize allocation of resources in order to improve energy efficiency of the cloud infrastructure while satisfying quality of service (QoS) requirements of the end users. Resources are allocated to jobs according to their QoS requirements. For energy efficient and QoS aware allocation of resources, EARA uses ACO at two levels. First level ACO allocates Virtual Machines (VMs) resources to jobs whereas second level ACO allocates Physical Machines (PMs) resources to VMs. Server consolidation and dynamic performance scaling of PMs are employed to conserve energy. The proposed methodology is implemented in CloudSim and the results are compared with existing popular resource allocation methods. Simulation results demonstrate that EARA achieves desired QoS and superior energy gains through better utilization of resources. EARA outperforms major existing resource allocation methods and achieves up to 10.56 % saving in energy consumption

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    DBSCAN inspired task scheduling algorithm for cloud infrastructure

    Get PDF
    Cloud computing in today\u27s computing environment plays a vital role, by providing efficient and scalable computation based on pay per use model. To make computing more reliable and efficient, it must be efficient, and high resources utilized. To improve resource utilization and efficiency in cloud, task scheduling and resource allocation plays a critical role. Many researchers have proposed algorithms to maximize the throughput and resource utilization taking into consideration heterogeneous cloud environments. This work proposes an algorithm using DBSCAN (Density-based spatial clustering) for task scheduling to achieve high efficiency. The proposed DBScan-based task scheduling algorithm aims to improve user task quality of service and improve performance in terms of execution time, average start time and finish time. The experiment result shows proposed model outperforms existing ACO and PSO with 13% improvement in execution time, 49% improvement in average start time and average finish time. The experimental results are compared with existing ACO and PSO algorithms for task scheduling

    EQUAL: Energy and QoS Aware Resource Allocation Approach for Clouds

    Get PDF
    The popularity of cloud computing is increasing by leaps and bounds. To cope with resource demands of increasing number of cloud users, the cloud market players establish large sized data centers. The huge energy consumption by the data centers and liability of fulfilling Quality of Service (QoS) requirements of the end users have made resource allocation a challenging task. In this paper, energy and QoS aware resource allocation approach which employs Antlion optimization for allocation of resources to virtual machines (VMs) is proposed. It can operate in three modes, namely power aware, performance aware, and balanced mode. The proposed approach enhances energy efficiency of the cloud infrastructure by improving the utilization of resources while fulfilling QoS requirements of the end users. The proposed approach is implemented in CloudSim. The simulation results have shown improvement in QoS and energy efficiency of the cloud
    corecore