6,265 research outputs found

    XSRL: An XML web-services request language

    Get PDF
    One of the most serious challenges that web-service enabled e-marketplaces face is the lack of formal support for expressing service requests against UDDI-resident web-services in order to solve a complex business problem. In this paper we present a web-service request language (XSRL) developed on the basis of AI planning and the XML database query language XQuery. This framework is designed to handle and execute XSRL requests and is capable of performing planning actions under uncertainty on the basis of refinement and revision as new service-related information is accumulated (via interaction with the user or UDDI) and as execution circumstances necessitate change

    Using Semantic Web Services for AI-Based Research in Industry 4.0

    Full text link
    The transition to Industry 4.0 requires smart manufacturing systems that are easily configurable and provide a high level of flexibility during manufacturing in order to achieve mass customization or to support cloud manufacturing. To realize this, Cyber-Physical Systems (CPSs) combined with Artificial Intelligence (AI) methods find their way into manufacturing shop floors. For using AI methods in the context of Industry 4.0, semantic web services are indispensable to provide a reasonable abstraction of the underlying manufacturing capabilities. In this paper, we present semantic web services for AI-based research in Industry 4.0. Therefore, we developed more than 300 semantic web services for a physical simulation factory based on Web Ontology Language for Web Services (OWL-S) and Web Service Modeling Ontology (WSMO) and linked them to an already existing domain ontology for intelligent manufacturing control. Suitable for the requirements of CPS environments, our pre- and postconditions are verified in near real-time by invoking other semantic web services in contrast to complex reasoning within the knowledge base. Finally, we evaluate our implementation by executing a cyber-physical workflow composed of semantic web services using a workflow management system.Comment: Submitted to ISWC 202

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment

    An Integrated Semantic Web Service Discovery and Composition Framework

    Full text link
    In this paper we present a theoretical analysis of graph-based service composition in terms of its dependency with service discovery. Driven by this analysis we define a composition framework by means of integration with fine-grained I/O service discovery that enables the generation of a graph-based composition which contains the set of services that are semantically relevant for an input-output request. The proposed framework also includes an optimal composition search algorithm to extract the best composition from the graph minimising the length and the number of services, and different graph optimisations to improve the scalability of the system. A practical implementation used for the empirical analysis is also provided. This analysis proves the scalability and flexibility of our proposal and provides insights on how integrated composition systems can be designed in order to achieve good performance in real scenarios for the Web.Comment: Accepted to appear in IEEE Transactions on Services Computing 201
    • …
    corecore